Dominik Kentrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042267/publications.pdf Version: 2024-02-01

DOMINIK KENTRUD

#	Article	IF	CITATIONS
1	FGF23 induces left ventricular hypertrophy. Journal of Clinical Investigation, 2011, 121, 4393-4408.	8.2	1,684
2	Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 2015, 22, 1020-1032.	16.2	432
3	Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis, 2014, 234, 335-343.	0.8	174
4	Nanomechanics of the Endothelial Glycocalyx in Experimental Sepsis. PLoS ONE, 2013, 8, e80905.	2.5	132
5	Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD. Nephrology Dialysis Transplantation, 2014, 29, 2028-2035.	0.7	86
6	Characterization of the Epithelial Sodium Channel δ-Subunit in Human Nasal Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 498-505.	2.9	44
7	Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L141-L154.	2.9	37
8	Cardioprotective effect of calcineurin inhibition in an animal model of renal disease. European Heart Journal, 2011, 32, 1935-1945.	2.2	35
9	Soluble Flt-1 links microvascular disease with heart failure in CKD. Basic Research in Cardiology, 2015, 110, 30.	5.9	35
10	PET with ¹⁸ F-FDG–Labeled T Lymphocytes for Diagnosis of Acute Rat Renal Allograft Rejection. Journal of Nuclear Medicine, 2013, 54, 1147-1153.	5.0	30
11	Potential of Noninvasive Serial Assessment of Acute Renal Allograft Rejection by ¹⁸ F-FDG PET to Monitor Treatment Efficiency. Journal of Nuclear Medicine, 2010, 51, 1644-1652.	5.0	29
12	Imaging-based diagnosis of acute renal allograft rejection. World Journal of Transplantation, 2016, 6, 174.	1.6	28
13	Hydroxyfasudil-Mediated Inhibition of ROCK1 and ROCK2 Improves Kidney Function in Rat Renal Acute Ischemia-Reperfusion Injury. PLoS ONE, 2011, 6, e26419.	2.5	25
14	Renal Contrast-Enhanced Sonography Findings in a Model of Acute Cellular Allograft Rejection. American Journal of Transplantation, 2016, 16, 1612-1619.	4.7	22
15	GlucoCEST magnetic resonance imaging inÂvivo may be diagnostic of acute renal allograft rejection. Kidney International, 2017, 92, 757-764.	5.2	21
16	Circulating Endothelial Progenitor Cells in Kidney Transplant Patients. PLoS ONE, 2011, 6, e24046.	2.5	18
17	Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. ELife, 2022, 11,	6.0	18
18	Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney International, 2022, 102, 261-279.	5.2	16

DOMINIK KENTRUP

#	Article	IF	CITATIONS
19	SPECT- and PET-Based Approaches for Noninvasive Diagnosis of Acute Renal Allograft Rejection. BioMed Research International, 2014, 2014, 1-7.	1.9	10
20	Renal Allograft Rejection: Noninvasive Ultrasound- and MRI-Based Diagnostics. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	10
21	Update on imaging-based diagnosis of acute renal allograft rejection. American Journal of Nuclear Medicine and Molecular Imaging, 2019, 9, 110-126.	1.0	8
22	FGF21-FGFR4 signaling in cardiac myocytes promotes concentric cardiac hypertrophy in mouse models of diabetes. Scientific Reports, 2022, 12, 7326.	3.3	8
23	FGF23, a novel muscle biomarker detected in the early stages of ALS. Scientific Reports, 2021, 11, 12062.	3.3	7
24	Strategies for Non-Invasive Molecular Imaging of Acute Allograft Rejection by Gamma Scintigraphy and Positron Emission Tomography. Current Radiopharmaceuticals, 2011, 4, 10-23.	0.8	5
25	Non-invasive Imaging of Acute Allograft Rejection after Rat Renal Transplantation Using ¹⁸ F-FDG PET. Journal of Visualized Experiments, 2013, , e4240.	0.3	5
26	The Role of DMP1 in CKD-MBD. Current Osteoporosis Reports, 2021, 19, 500-509.	3.6	4
27	Interleukin 24 promotes cell death in renal epithelial cells and is associated with acute renal injury. American Journal of Transplantation, 0, , .	4.7	3
28	C4d Deposition after Allogeneic Renal Transplantation in Rats Is Involved in Initial Apoptotic Cell Clearance. Cells, 2021, 10, 3499.	4.1	1