
Renata Talar-Wojnarowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9042197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294
2	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
3	Clinical Significance of Interleukin-6 (II-6) Gene Polymorphism and II-6 Serum Level in Pancreatic Adenocarcinoma and Chronic Pancreatitis. Digestive Diseases and Sciences, 2009, 54, 683-689.	2.3	89
4	Diagnostic and therapeutic recommendations in pancreatic ductal adenocarcinoma. Recommendations of the Working Group of the Polish Pancreatic Club. Przeglad Gastroenterologiczny, 2019, 14, 1-18.	0.7	64
5	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	5.1	57
6	ABO blood groups and pancreatic cancer risk and survival: Results from the PANcreatic Disease ReseArch (PANDoRA) consortium. Oncology Reports, 2013, 29, 1637-1644.	2.6	55
7	Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic Disease ReseArch (PANDoRA) consortium. Digestive and Liver Disease, 2013, 45, 95-99.	0.9	45
8	Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget, 2016, 7, 57011-57020.	1.8	41
9	Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. International Journal of Cancer, 2019, 144, 1275-1283.	5.1	36
10	Molecular pathogenesis of pancreatic adenocarcinoma: potential clinical implications. Medical Science Monitor, 2006, 12, RA186-93.	1.1	34
11	The Prevalence of Cationic Trypsinogen (PRSS1) and Serine Protease Inhibitor, Kazal Type 1 (SPINK1) Gene Mutations in Polish Patients with Alcoholic and Idiopathic Chronic Pancreatitis. Digestive Diseases and Sciences, 2011, 56, 894-901.	2.3	32
12	Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. Journal of Medical Genetics, 2021, 58, 369-377.	3.2	31
13	Determinants of Sleep Quality in Inflammatory Bowel Diseases. Journal of Clinical Medicine, 2020, 9, 2921.	2.4	30
14	Pancreatic cyst fluid analysis for differential diagnosis between benign and malignant lesions. Oncology Letters, 2013, 5, 613-616.	1.8	28
15	Role of adipocytokines and its correlation with endocrine pancreatic function in patients with pancreatic cancer. Pancreatology, 2013, 13, 409-414.	1.1	26
16	A comparative analysis of K-ras mutation and carcinoembryonic antigen in pancreatic cyst fluid. Pancreatology, 2012, 12, 417-420.	1.1	22
17	Utility of serum IgG, IgG4 and carbonic anhydrase II antibodies in distinguishing autoimmune pancreatitis from pancreatic cancer and chronic pancreatitis. Advances in Medical Sciences, 2014, 59, 288-292.	2.1	22
18	Clinical Value of Serum Neopterin, Tissue Polypeptide-Specific Antigen and CA19-9 Levels in Differential Diagnosis between Pancreatic Cancer and Chronic Pancreatitis. Pancreatology, 2011, 10, 689-694.	1.1	21

#	Article	IF	CITATIONS
19	Lack of Replication of Seven Pancreatic Cancer Susceptibility Loci Identified in Two Asian Populations. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 320-323.	2.5	20
20	Genomeâ€wide association study identifies an early onset pancreatic cancer risk locus. International Journal of Cancer, 2020, 147, 2065-2074.	5.1	20
21	Brainâ€derived neurotrophic factor is elevated in the blood serum of Crohn's disease patients, but is not influenced by antiâ€7NFâ€Î± treatment—A pilot study. Neurogastroenterology and Motility, 2021, 33, e13978.	3.0	19
22	Clinical Significance of K-ras and c-erbB-2 Mutations in Pancreatic Adenocarcinoma and Chronic Pancreatitis. International Journal of Gastrointestinal Cancer, 2005, 35, 033-042.	0.4	18
23	Common genetic variants associated with pancreatic adenocarcinoma may also modify risk of pancreatic neuroendocrine neoplasms. Carcinogenesis, 2018, 39, 360-367.	2.8	16
24	Efficacy, Safety and Future Perspectives of JAK Inhibitors in the IBD Treatment. Journal of Clinical Medicine, 2021, 10, 5660.	2.4	16
25	Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Scientific Reports, 2016, 6, 39565.	3.3	15
26	SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Scientific Reports, 2017, 7, 43812.	3.3	15
27	Role of <i>cyclooxygenase-2</i> gene polymorphisms in pancreatic carcinogenesis. World Journal of Gastroenterology, 2011, 17, 4113.	3.3	15
28	Association of genetic polymorphisms with survival of pancreatic ductal adenocarcinoma patients. Carcinogenesis, 2016, 37, 957-964.	2.8	14
29	Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. International Journal of Cancer, 2018, 142, 290-296.	5.1	14
30	Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis, 2021, 42, 1037-1045.	2.8	14
31	Intestinal amyloidosis: Clinical manifestations and diagnostic challenge. Advances in Clinical and Experimental Medicine, 2021, 30, 563-570.	1.4	13
32	Management of acute pancreatitis (AP) – Polish Pancreatic Club recommendations. Przeglad Gastroenterologiczny, 2016, 2, 65-72.	0.7	10
33	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	2.3	10
34	Analysis of XRCC2 and XRCC3 gene polymorphisms in pancreatic cancer. Biomedical Reports, 2016, 4, 236-240.	2.0	9
35	The prevalence, characteristics, and determinants of anaemia in newly diagnosed patients with inflammatory bowel disease. Przeglad Gastroenterologiczny, 2019, 14, 39-47.	0.7	9
36	Assessment of frequency and safety of endoscopic retrograde cholangiopancreatography in patients		9

Assessment of frequency and safety of encourse over 80 years of age. , 2009, 119, 136-40.

#	Article	IF	CITATIONS
37	Genetic variability of the ABCC2 gene and clinical outcomes in pancreatic cancer patients. Carcinogenesis, 2019, 40, 544-550.	2.8	8
38	Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk. Frontiers in Oncology, 2021, 11, 771312.	2.8	8
39	Diagnostic and therapeutic recommendations for chronic pancreatitis. Recommendations of the Working Group of the Polish Society of Gastroenterology and the Polish Pancreas Club. Przeglad Gastroenterologiczny, 2018, 13, 167-181.	0.7	7
40	Efficiency and safety of one-year anti-TNF-α treatment in Crohn's disease: a Polish single-centre experience. Przeglad Gastroenterologiczny, 2020, 15, 156-160.	0.7	7
41	A simple index to predict the efficiency of adalimumab treatment in Crohn's disease with a limited duration of therapy. Polish Archives of Internal Medicine, 2020, 130, 910-912.	0.4	7
42	Guidelines for diagnosis and treatment of chronic pancreatitis. Recommendations of Working Group of the Polish National Consultant in gastroenterology and Polish Pancreatic Club. Przeglad Gastroenterologiczny, 2011, 6, 339-352.	0.7	6
43	Lack of Association for Reported Endocrine Pancreatic Cancer Risk Loci in the PANDoRA Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1349-1351.	2.5	5
44	Characteristics of patients with moderate-to-severe ulcerative colitis treated with vedolizumab: results from a Polish multicenter, prospective, observational real-life study (the POLONEZ study). Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110364.	3.2	5
45	Utility of different serum fibrosis markers in diagnosing patients with chronic pancreatitis and pancreatic adenocarcinoma. World Journal of Gastrointestinal Oncology, 2016, 8, 635.	2.0	5
46	Insulin, insulin-like growth factor 1 and insulin-like growth factor binding protein 3 serum concentrations in patients with adenomatous colon polyps. Przeglad Gastroenterologiczny, 2013, 5, 308-314.	0.7	4
47	Procoagulant Disorders in Patients with Newly Diagnosed Pancreatic Adenocarcinoma. Medicina (Lithuania), 2020, 56, 677.	2.0	4
48	Genetic Polymorphisms Involved in Mitochondrial Metabolism and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2342-2345.	2.5	4
49	Comparative evaluation of p53 mutation in pancreatic adenocarcinoma and chronic pancreatitis. Hepato-Gastroenterology, 2006, 53, 608-12.	0.5	4
50	Surgical treatment of pancreatic cancer – randomized controlled trials. Przeglad Gastroenterologiczny, 2011, 3, 133-138.	0.7	3
51	Serum Levels of Chemerin in Patients with Inflammatory Bowel Disease as an Indicator of Anti-TNF Treatment Efficacy. Journal of Clinical Medicine, 2021, 10, 4615.	2.4	3
52	Possible under-treatment of women in Poland with Crohn's disease: a subgroup analysis from a prospective multicenter study of the use of anti-TNFs. Polish Archives of Internal Medicine, 2017, 127, 674-680.	0.4	3
53	Evaluation of pH-impedance testing in diagnosis of patients with suspected extra-oesophageal manifestations of gastroesophageal reflux disease. Przeglad Gastroenterologiczny, 2012, 6, 386-396.	0.7	2
54	Lack of association of CD44-rs353630 and CHI3L2-rs684559 with pancreatic ductal adenocarcinoma survival. Scientific Reports, 2021, 11, 7570.	3.3	2

#	Article	IF	CITATIONS
55	Prevalence of the N34S mutation of SPINK1 (serine protease inhibitor, Kazal type 1) in patients with chronic pancreatitis and pancreatic cancer. Przeglad Gastroenterologiczny, 2010, 4, 214-221.	0.7	1
56	Molecular Basis of Pancreatic CancerSelected Issues. Gastrointestinal Oncology, 2002, 4, 147-152.	0.1	1
57	Outcome of pseudocysts complicating chronic pancreatitis. Hepato-Gastroenterology, 2010, 57, 631-4.	0.5	1
58	Neurological Manifestations and Psychiatric Disorders in the Course of Inflammatory Bowel Diseases. Journal of Gastrointestinal and Liver Diseases, 2022, 31, 107-118.	0.9	1
59	The Association between Temperament, Chronotype, Depressive Symptoms, and Disease Activity among Patients with Inflammatory Bowel Disease—A Cross-Sectional Pilot Study. Life, 2021, 11, 1347.	2.4	1
60	Efficacy and safety of biological treatment in Crohn's disease: our experience. Przeglad Gastroenterologiczny, 2011, 5, 304-309.	0.7	0
61	Leukocytapheresis in patients with inflammatory bowel diseases. Przeglad Gastroenterologiczny, 2021, 16, 99-105.	0.7	Ο