
Zeng-Guo Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9041927/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Progress in Polymer Science, 2021, 118, 101408.	11.8	103
2	Heparin-Conjugated PCL Scaffolds Fabricated by Electrospinning and Loaded with Fibroblast Growth Factor 2. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 389-406.	1.9	78
3	Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B. Polymer, 2009, 50, 4343-4351.	1.8	70
4	The <i>in vitro</i> and <i>in vivo</i> biocompatibility evaluation of heparin–poly(ε aprolactone) conjugate for vascular tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3251-3258.	2.1	66
5	A vascular tissue engineering scaffold with core–shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomedical Materials (Bristol), 2016, 11, 035007.	1.7	62
6	In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. Materials Science and Engineering C, 2020, 116, 111169.	3.8	60
7	The fabrication of double layer tubular vascular tissue engineering scaffold <i>via</i> coaxial electrospinning and its 3D cell coculture. Journal of Biomedical Materials Research - Part A, 2015, 103, 3863-3871.	2.1	56
8	Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and its ε-amino derivatives. Soft Matter, 2009, 5, 1474.	1.2	50
9	Novel mainâ€chain polyrotaxanes synthesized via ATRP of HPMA in aqueous media. Journal of Polymer Science Part A, 2008, 46, 5283-5293.	2.5	47
10	Solvent- and Thermoresponsive Polyrotaxanes with β-Cyclodextrin Dispersed/Aggregated Structures on a Pluronic F127 Backbone. Journal of Physical Chemistry B, 2010, 114, 5342-5349.	1.2	44
11	Low-Molecular-Weight Organo- and Hydrogelators Based on Cyclo(<scp>l</scp> -Lys- <scp>l</scp> -Glu). Langmuir, 2016, 32, 4586-4594.	1.6	44
12	Dual thermo-responsive polyrotaxane-based triblock copolymers synthesized viaATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with β-cyclodextrins. Polymer Chemistry, 2011, 2, 931-940.	1.9	43
13	Synthesis and characterization of biodegradable polyurethane based on poly(Îμ-caprolactone) and L-lysine ethyl ester diisocyanate. Frontiers of Materials Science in China, 2009, 3, 25-32.	O.5	40
14	The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning. Frontiers of Materials Science, 2016, 10, 113-121.	1.1	37
15	Shear-assisted hydrogels based on self-assembly of cyclic dipeptide derivatives. Journal of Materials Chemistry, 2009, 19, 6100.	6.7	35
16	A tumor-targeting nano doxorubicin delivery system built from amphiphilic polyrotaxane-based block copolymers. Polymer, 2013, 54, 5188-5198.	1.8	33
17	Synthesis and characterization of block copolymers comprising a polyrotaxane middle block flanked by two brush-like PCL blocks. Soft Matter, 2009, 5, 1848.	1.2	32
18	Preparation of Smallâ€Diameter Tissueâ€Engineered Vascular Grafts Electrospun from Heparin Endâ€Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model. Macromolecular Bioscience, 2019, 19, e1900114.	2.1	32

#	Article	IF	CITATIONS
19	Supramolecular structured hydrogel preparation based on self-assemblies of photocurable star-shaped macromers with α-cyclodextrins. Journal of Polymer Science Part A, 2005, 43, 2941-2949.	2.5	31
20	Novel triblock copolymers comprising a polyrotaxane middle block flanked by PNIPAAm blocks showing both thermo- and solvent-response. Journal of Materials Chemistry, 2011, 21, 3243-3250.	6.7	30
21	Formation of a Polypseudorotaxane via Selfâ€Assembly of γâ€Cyclodextrin with Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Rapid Communications, 2012, 33, 1143-1148.	2.0	27
22	Synthesis and evaluation of biodegradable segmented multiblock poly(ether ester) copolymers for biomaterial applications. Polymer International, 2004, 53, 2145-2154.	1.6	26
23	Novel polyrotaxanes comprising Î ³ -cyclodextrins and Pluronic F127 end-capped with poly(N-isopropylacrylamide) showing solvent-responsive crystal structures. Polymer, 2011, 52, 347-355.	1.8	25
24	Synthesis and characterization of poly(butylene terephthalate)-co-poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 1351-1358.	Tf 50 547 1.6	Td (succinat 23
25	The self-aggregation behaviour of amphotericin B-loaded polyrotaxane-based triblock copolymers and their hemolytic evaluation. Soft Matter, 2009, 5, 4797.	1.2	23
26	A pHâ€sensitive binary drug delivery system based on poly(caprolactone)–heparin conjugates. Journal of Biomedical Materials Research - Part A, 2014, 102, 880-889.	2.1	23
27	Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 999-1023.	1.9	23
28	Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers, 2022, 14, 1549.	2.0	21
29	Vesicular and tubular structures prepared from selfâ€assembly of novel amphiphilic ABA triblock copolymers in aqueous solutions. Journal of Polymer Science Part A, 2008, 46, 1042-1050.	2.5	20
30	Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese Journal of Polymer Science (English Edition), 2013, 31, 251-262.	2.0	20
31	The preparation and morphology control of heparin-based pH sensitive polyion complexes and their application as drug carriers. Carbohydrate Polymers, 2019, 211, 370-379.	5.1	20
32	Gelatin coating promotes <i>in situ</i> endothelialization of electrospun polycaprolactone vascular grafts. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1161-1181.	1.9	20
33	Selfâ€Assembly of Polyrotaxanes Synthesized Via Click Chemistry of Azidoâ€Endcapped PNIPAAmâ€ <i>b</i> â€Pluronic F68â€ <i>b</i> â€PNIPAAm/γâ€CD with Propargylamine‧ubstituted βâ€CDs. Macromolecular Chemistry and Physics, 2014, 215, 1022-1029.	1.1	19
34	The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(É⟩ aprolactone) vascular scaffold. Journal of Biomedical Materials Research - Part A, 2017, 105, 2806-2815.	2.1	19
35	Thermally responsive polyrotaxanes synthesized through the telomerization ofN-isopropylacrylamide with polypseudorotaxanes made from α-cyclodextrin threaded onto thiolated poly(ethylene glycol). Journal of Polymer Science Part A, 2006, 44, 3717-3723.	2.5	18
36	Synthesis and characterization of homo- and copolymers of 3-(2-cyano ethoxy)methyl- and 3-[methoxy(triethylenoxy)]methyl-3′-methyl-oxetane. Polymer International, 2005, 54, 1440-1448.	1.6	17

#	Article	IF	CITATIONS
37	Initiator-free photocrosslinking of electrospun biodegradable polyester fiber based tubular scaffolds and their cell affinity for vascular tissue engineering. Chinese Journal of Polymer Science (English Edition), 2010, 28, 829-840.	2.0	17
38	Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations. Journal of Colloid and Interface Science, 2017, 490, 665-676.	5.0	17
39	Synthesis of water soluble polyrotaxanes by end-capping polypseudo-rotaxanes of $\hat{1}^3$ -CDs with PHEMA-PPO-PEO-PHEMA using ATRP of MPC. Polymer Chemistry, 2015, 6, 5832-5837.	1.9	16
40	The synthesis and application of heparin-based smart drug carrier. Carbohydrate Polymers, 2016, 140, 260-268.	5.1	16
41	The preparation of pH and CSH dual responsive thiolated heparin/DOX complex and its application as drug carrier. Carbohydrate Polymers, 2020, 230, 115592.	5.1	16
42	Hydrogel Complex Electrospun Scaffolds and Their Multiple Functions in In Situ Vascular Tissue Engineering. ACS Applied Bio Materials, 2021, 4, 2373-2384.	2.3	16
43	Preparation and in vivo evaluation of surface heparinized small diameter tissue engineered vascular scaffolds of poly(ε-caprolactone) embedded with collagen suture. Journal of Biomaterials Applications, 2020, 34, 812-826.	1.2	15
44	Stable and Unconventional Conformation of Single PEG Bent γ Dâ€Based Polypseudorotaxanes. Macromolecular Chemistry and Physics, 2011, 212, 2319-2327.	1.1	14
45	Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone. Journal of Materials Science: Materials in Medicine, 2015, 26, 112.	1.7	14
46	Rapidly Recoverable Thixotropic Hydrogels from the Racemate of Chiral OFm Monosubstituted Cyclo(Glu-Glu) Derivatives. Langmuir, 2017, 33, 13821-13827.	1.6	14
47	Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model. Journal of Vascular Research, 2018, 55, 338-349.	0.6	14
48	Loose-fit polypseudorotaxanes constructed from \hat{I}^3 -CDs and PHEMA-PPG-PEG-PPG-PHEMA. Beilstein Journal of Organic Chemistry, 2014, 10, 2461-2469.	1.3	13
49	Study on synthesis of glycopeptide-based triblock copolymers and their aggregation behavior in water. Frontiers of Materials Science in China, 2007, 1, 162-167.	0.5	11
50	Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model. Materials Science and Engineering C, 2022, 133, 112628.	3.8	11
51	The intrinsic microstructure of supramolecular hydrogels derived from α-cyclodextrin and pluronic F127: nanosheet building blocks and hierarchically self-assembled structures. Soft Matter, 2020, 16, 5906-5909.	1.2	10
52	Distinguishing channel-type crystal structure from dispersed structure in β-cyclodextrin based polyrotaxanes via FTIR spectroscopy. Frontiers of Materials Science, 2011, 5, 329-334.	1.1	9
53	Looseâ€Fit Polypseudorotaxanes Fabricated by <i>γ</i> â€CDs Threaded Onto a Single PNIPAAmâ€PEGâ€PNIPAAr Chain in Aqueous Solution. Macromolecular Chemistry and Physics, 2012, 213, 1532-1539.	n 1.1	9
54	The preparation of cationic folic acid and its application in drug delivery system. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1714-1723.	2.0	9

#	Article	IF	CITATIONS
55	Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid and Polymer Science, 2017, 295, 1549-1561.	1.0	9
56	Recyclable Nanoporous Materials with Ordered Tunnels Selfâ€Assembled from α―and γ yclodextrins. ChemNanoMat, 2019, 5, 838-846.	1.5	9
57	Polyrotaxanes created by end-capping polypseudorotaxanes self-assembled from β-CDs with distal azide terminated PHEMA using propargylamine monosubstituted β-CDs. Polymer Chemistry, 2020, 11, 653-658.	1.9	9
58	Longâ€ŧerm investigation on hydrolytic degradation and morphology of poly(ethylene glycol) Tj ETQq0 0 0 rgBT Science, 2009, 111, 1462-1470.	/Overlock 1.3	8 10 Tf 50 627 8
59	Endâ€capping doubleâ€chain stranded polypseudorotaxanes using lengthily tunable poly(2â€hydroxyethyl) Tj E	TQq110.	784314 rgBT
60	Design and characterization of small-diameter tissue-engineered blood vessels constructed by electrospun polyurethane-core and gelatin-shell coaxial fiber. Bioengineered, 2021, 12, 5769-5788.	1.4	8
61	Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups. Science China Chemistry, 2016, 59, 293-302.	4.2	7
62	Synthesis and gelation capability of Fmoc and Boc mono-substituted cyclo(L-Lys-L-Lys)s. Chemical Research in Chinese Universities, 2016, 32, 484-492.	1.3	6
63	Biocompatibility evaluation of heparin-conjugated poly(ε-caprolactone) scaffolds in a rat subcutaneous implantation model. Journal of Materials Science: Materials in Medicine, 2020, 31, 76.	1.7	6
64	The performance of heparin modified poly(εâ€caprolactone) small diameter tissue engineering vascular graft in canine—A longâ€term pilot experiment in vivo. Journal of Biomedical Materials Research - Part A, 2021, 109, 2493-2505.	2.1	6
65	Constructing solvent-free inclusion complexes from \hat{l}^2 -cyclodextrin- and adamantane-terminated polycaprolactones and their mechanical and shape memory properties. Polymer, 2021, 230, 124047.	1.8	6
66	The preparation of hybrid trimer by cyclo-oligomerization of TDI and HDI and its curing process with polyols to form elastic PU coating. Journal of Coatings Technology Research, 2017, 14, 1279-1288.	1.2	6
67	Preparation and characterization of cross-linked polyurethanes using β-CD [3]PR as slide-ring cross-linker. Polymer, 2022, 249, 124862.	1.8	6
68	Enzyme-catalyzed preparation of supramolecular structured hydrogel of polypseudorotaxanes derived from the self-assembly of α-CDs with 3-arm p-hydroxyphenylpropionate terminated PEG. Frontiers of Materials Science in China, 2007, 1, 395-400.	0.5	5
69	Slightly Crossâ€Linked Polyrotaxanes Made by Linking <i>α</i> yclodextrins Entrapped in Polyrotaxanes Using Hexamethylene Diisocyanate. Chinese Journal of Chemistry, 2012, 30, 2453-2460.	2.6	5
70	Self-assemblies of Î ³ -CDs with pentablock copolymers PMA-PPO-PEO-PPO-PMA and endcapping via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. Beilstein Journal of Organic Chemistry, 2015, 11, 2267-2277.	1.3	5
71	The synthesis and characterization of a processable polyrotaxane-based triblock copolymer via a "two steps―strategy. RSC Advances, 2016, 6, 33221-33230.	1.7	5
72	How Does PHEMA Pass through the Cavity of γ-CDs to Create Mismatched Overfit Polypseudorotaxanes?. Langmuir, 2018, 34, 14076-14084.	1.6	5

#	Article	IF	CITATIONS
73	Unexpected Polypseudorotaxanes Formed from the Self-assembly of β-Cyclodextrins with Poly(<i>N</i> -isopropylacrylamide) Homo- and Copolymers. Journal of Physical Chemistry B, 2019, 123, 5004-5013.	1.2	5
74	Remodeling of Structurally Reinforced (TPU+PCL/PCL)-Hep Electro-spun Small Diameter Bilayer Vascular Grafts Interposed in Rat Ab-dominal Aorta. Biomaterials Science, 0, , .	2.6	5
75	Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins. Science China Chemistry, 2012, 55, 1115-1124.	4.2	4
76	A one-step synthesis of polyrotaxane via in situ Michael addition reaction. Iranian Polymer Journal (English Edition), 2015, 24, 679-685.	1.3	4
77	The mobility of threaded α-cyclodextrins in PR copolymer and its influences on mechanical properties. Chinese Journal of Polymer Science (English Edition), 2017, 35, 752-763.	2.0	4
78	Chemical coatings relying on the self-polymerization of catechol for retrievable vena cava filters. New Journal of Chemistry, 2018, 42, 3722-3728.	1.4	4
79	Synthesis and characteristics of a siliconâ€containing polymer, manufacture of an electrolyte membrane from the polymer and poly(vinylidene fluorideâ€ <i>co</i> â€hexafluoropropene), and property testing of the membrane. Journal of Applied Polymer Science, 2009, 114, 1086-1093.	1.3	3
80	Synthesis and characterization of polyrotaxanes comprising α-cyclodextrins and poly(ε-caprolactone) end-capped with poly(butyl methacrylate)s. Polymer International, 2014, 63, 1025-1034.	1.6	3
81	Polypseudorotaxane-based multiblock copolymers prepared via in situ ATRP of NIPAAm initiated by inclusion complex having a feeding ratio of 4 β-CDs to ferrocene containing initiator. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 69-79.	0.9	3
82	A Study on Properties of PEG Bent Double Chain Stranded Polypseudorotaxanes with <i>î³</i> -Cyclodextrins. Acta Chimica Sinica, 2013, 71, 347.	0.5	3
83	Size-complementary effects of PEG diamine 1,1'-disubstituted ferrocene on incorporations of β- and γ-cyclodextrins and syntheses of poly(pseudo)rotaxanes with lower coverages therefrom. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 99-108.	0.9	3
84	Preparation and characterisation of zwitterionic sulfobetaine containing siloxane-based biostable polyurethanes. Materials Advances, 2022, 3, 4608-4621.	2.6	3
85	Synthesis of copolymers of 3-acryloyloxymethyl-3′-methyloxetane and 3-(2-(2-(2-methoxyethylenoxy)ethylenoxy)ethylenoxy)-3′-methyloxetane and their ionic conductivity properties. Frontiers of Chemical Engineering in China, 2007, 1, 343-348.	0.6	2
86	The Synthesis and Characterization of Spacer-Free Liquid Crystal Polyrotaxane by Virtue of the Mobility of Threaded α-Cyclodextrins. Macromolecular Chemistry and Physics, 2016, 217, 646-653.	1.1	2
87	Synthesis and Characterization of Polyrotaxanes Comprising γâ€CDs and Distal Azideâ€Terminated PHEMA Using Propargylamine Monosubstituted βâ€CDs as End Stoppers. Macromolecular Chemistry and Physics, 2020, 221, 2000157.	1.1	2
88	Hydroxypropyl β yclodextrin Solubilizing Hydrophobic Initiator to Initiate Copperâ€Mediated RDRP of NIPAM in Aqueous Media. ChemistrySelect, 2020, 5, 3385-3390.	0.7	2
89	The crescendo pulse frequency of shear stress stimulates the endothelialization of bone marrow mesenchymal stem cells on the luminal surface of decellularized scaffold in the bioreactor. Bioengineered, 2022, 13, 7925-7938.	1.4	2
90	Synthesis and characterization of novel triblock copolymers comprising poly(tetrahydrofuran) as a central block and poly(Î ³ -benzyl L-glutamate)s as outer blocks. Frontiers of Materials Science in China, 2008, 2, 84-90.	0.5	1

#	Article	IF	CITATIONS
91	Preparation and evaluation of two kinds of solid polymer electrolytes made from crosslinked poly(ether urethane) elastomers consisting of a combâ€like and a hyperbranched polyether. Journal of Applied Polymer Science, 2008, 109, 1955-1961.	1.3	1
92	A Polyrotaxane-based pH-labile Drug Delivery System. Periodica Polytechnica: Chemical Engineering, 2014, 58, 55.	0.5	1
93	Anti-coagulation and anti-hyperplasia coating for retrievable vena cava filters by electrospraying and their performance in vivo. International Journal of Pharmaceutics, 2022, 619, 121690.	2.6	1