
Adam Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9041747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances and applications of iridium-catalysed asymmetric allylic substitution. Organic and Biomolecular Chemistry, 2012, 10, 3147.	2.8	216
2	Synthesis of Naturalâ€Productâ€Like Molecules with Over Eighty Distinct Scaffolds. Angewandte Chemie - International Edition, 2009, 48, 104-109.	13.8	209
3	Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries. Natural Product Reports, 2008, 25, 719.	10.3	195
4	Asymmetric Phase-Transfer Catalysis. Angewandte Chemie - International Edition, 1999, 38, 1583-1585.	13.8	178
5	Structural Basis of Inhibitor Specificity of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM-1) Kinase. Journal of Medicinal Chemistry, 2005, 48, 7604-7614.	6.4	141
6	Regulation of Nanog Expression by Phosphoinositide 3-Kinase-dependent Signaling in Murine Embryonic Stem Cells. Journal of Biological Chemistry, 2007, 282, 6265-6273.	3.4	130
7	Convergent, Regiospecific Synthesis of Quinolines from <i>o</i> -Aminophenylboronates. Organic Letters, 2008, 10, 4117-4120.	4.6	121
8	Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proceedings of the United States of America, 2003, 100, 3143-3148.	7.1	110
9	Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective. Drug Discovery Today, 2015, 20, 1310-1316.	6.4	86
10	Engineering aldolases as biocatalysts. Current Opinion in Chemical Biology, 2014, 19, 25-33.	6.1	84
11	Towards phase-transfer catalysts with a chiral anion: inducing asymmetry in the reactions of cations. Tetrahedron: Asymmetry, 2003, 14, 1995-2004.	1.8	83
12	A divergent synthetic approach to diverse molecular scaffolds: assessment of lead-likeness using LLAMA, an open-access computational tool. Chemical Communications, 2016, 52, 7209-7212.	4.1	83
13	Directed evolution of aldolases for exploitation in synthetic organic chemistry. Archives of Biochemistry and Biophysics, 2008, 474, 318-330.	3.0	77
14	Creation of a Pair of Stereochemically Complementary Biocatalysts. Journal of the American Chemical Society, 2006, 128, 16238-16247.	13.7	68
15	Evaluating New Chemistry to Drive Molecular Discovery: Fit for Purpose?. Angewandte Chemie - International Edition, 2016, 55, 13650-13657.	13.8	65
16	Photochemical transformations of pyridinium salts: mechanistic studies and applications in synthesis. Organic and Biomolecular Chemistry, 2007, 5, 2735.	2.8	59
17	Towards the systematic exploration of chemical space. Organic and Biomolecular Chemistry, 2012, 10, 17-28.	2.8	58
18	Smallâ€Molecule Proteomimetic Inhibitors of the HIFâ€1α–p300 Protein–Protein Interaction. ChemBioChem 2014, 15, 1083-1087.	' 2.6	57

Adam Nelson

#	Article	IF	CITATIONS
19	A systematic approach to diverse, lead-like scaffolds from α,α-disubstituted amino acids. Chemical Communications, 2015, 51, 11174-11177.	4.1	57
20	A unified lead-oriented synthesis of over fifty molecular scaffolds. Organic and Biomolecular Chemistry, 2015, 13, 859-865.	2.8	55
21	Predicting and Experimentally Validating Hot-Spot Residues at Protein–Protein Interfaces. ACS Chemical Biology, 2019, 14, 2252-2263.	3.4	54
22	High-Content, High-Throughput Screening for the Identification of Cytotoxic Compounds Based on Cell Morphology and Cell Proliferation Markers. PLoS ONE, 2014, 9, e88338.	2.5	51
23	A modular lead-oriented synthesis of diverse piperazine, 1,4-diazepane and 1,5-diazocane scaffolds. Organic and Biomolecular Chemistry, 2014, 12, 2584-2591.	2.8	50
24	A conceptual framework for analysing and planning synthetic approaches to diverse lead-like scaffolds. Chemical Communications, 2013, 49, 2383.	4.1	48
25	Towards the realisation of lead-oriented synthesis. Drug Discovery Today, 2014, 19, 813-819.	6.4	48
26	Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nature Chemistry, 2014, 6, 872-876.	13.6	48
27	Synthesis and Demonstration of the Biological Relevance of sp ³ â€rich Scaffolds Distantly Related to Natural Product Frameworks. Chemistry - A European Journal, 2017, 23, 15227-15232.	3.3	48
28	Creation of a Tailored Aldolase for the Parallel Synthesis of Sialic Acid Mimetics. Angewandte Chemie - International Edition, 2005, 44, 2109-2112.	13.8	47
29	Desymmetrization of a Centrosymmetric Diepoxide:Â Efficient Synthesis of a Key Intermediate in a Total Synthesis of Hemibrevetoxin B. Journal of Organic Chemistry, 2003, 68, 747-753.	3.2	43
30	Reaction Mechanism of <i>N</i> -Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography, QM/MM Simulation, and Mutagenesis. ACS Chemical Biology, 2014, 9, 1025-1032.	3.4	41
31	Catalytic and stoichiometric approaches to the desymmetrisation of centrosymmetric piperazines by enantioselective acylation: a total synthesis of Dragmacidin A. Organic and Biomolecular Chemistry, 2006, 4, 4135.	2.8	39
32	An approach to the total synthesis of lankacidins: synthesis of the requisite building blocks. Tetrahedron Letters, 2001, 42, 1247-1250.	1.4	38
33	Modular, Gold-Catalyzed Approach to the Synthesis of Lead-like Piperazine Scaffolds. Organic Letters, 2013, 15, 6094-6097.	4.6	38
34	Assessing molecular scaffolds for CNS drug discovery. Drug Discovery Today, 2017, 22, 965-969.	6.4	37
35	Iridium atalyzed Asymmetric Allylic Amination with Polar Amines: Access to Building Blocks with Leadâ€Like Molecular Properties. Advanced Synthesis and Catalysis, 2010, 352, 3153-3157.	4.3	36
36	An efficient protocol for a sharpless style racemic dihydroxylation. Tetrahedron Letters, 1995, 36, 1719-1722.	1.4	35

#	Article	IF	CITATIONS
37	Convergent synthesis of dihydroquinolones from o-aminoarylboronates. Tetrahedron, 2009, 65, 9002-9007.	1.9	35
38	Synthesis of Small Molecules with High Scaffold Diversity: Exploitation of Metathesis Cascades in Combination with Inter―and Intramolecular Diels–Alder Reactions. Chemistry - A European Journal, 2010, 16, 9563-9571.	3.3	35
39	Exploration of the HIF-1α/p300 interface using peptide and Adhiron phage display technologies. Molecular BioSystems, 2015, 11, 2738-2749.	2.9	35
40	An Enantio―and Diastereoselective Chemoenzymatic Synthesis of αâ€Fluoro βâ€Hydroxy Carboxylic Esters. Angewandte Chemie - International Edition, 2016, 55, 6767-6770.	13.8	35
41	An approach to the total synthesis of lankacidins: synthesis of advanced macrocyclic precursors. Tetrahedron Letters, 2001, 42, 1251-1254.	1.4	33
42	First Desymmetrization of a Centrosymmetric Molecule in Natural Product Synthesis: Preparation of a Key Fragment in the Synthesis of Hemibrevetoxin B. Angewandte Chemie - International Edition, 2001, 40, 4082-4084.	13.8	33
43	Intramolecular acylations of Î ³ -benzoyloxy phosphine oxides: synthesis of optically active cyclopropyl ketones. Tetrahedron Letters, 1996, 37, 1501-1504.	1.4	32
44	Comparison of the ATP Binding Sites of Protein Kinases Using Conformationally Diverse Bisindolylmaleimides. Journal of the American Chemical Society, 2005, 127, 11699-11708.	13.7	31
45	Streamlining bioactive molecular discovery through integration and automation. Nature Reviews Chemistry, 2018, 2, 174-183.	30.2	31
46	Asymmetric dihydroxylations of allylic phosphine oxides. Tetrahedron Letters, 1995, 36, 2685-2688.	1.4	30
47	Extending enzyme molecular recognition with an expanded amino acid alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2610-2615.	7.1	30
48	Hypoxia inducible factor (HIF) as a model for studying inhibition of protein–protein interactions. Chemical Science, 2017, 8, 4188-4202.	7.4	30
49	Catalyst Control in Sequential Asymmetric Allylic Substitution: Stereodivergent Access to <i>N,N</i> -Diprotected Unnatural Amino Acids. Journal of Organic Chemistry, 2011, 76, 5495-5501.	3.2	29
50	A Fluorous-Tagged Linker from Which Small Molecules Are Released by Ring-Closing Metathesis. Journal of Organic Chemistry, 2008, 73, 2753-2759.	3.2	28
51	Structural Insights into Substrate Specificity in Variants of N-Acetylneuraminic Acid Lyase Produced by Directed Evolution. Journal of Molecular Biology, 2010, 404, 56-69.	4.2	28
52	Activityâ€Ðirected Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angewandte Chemie - International Edition, 2015, 54, 13538-13544.	13.8	27
53	A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chemical Communications, 2016, 52, 9837-9840.	4.1	27
54	Structural Insights into the Recovery of Aldolase Activity in <i>N</i> â€Acetylneuraminic Acid Lyase by Replacement of the Catalytically Active Lysine with γâ€Thialysine by Using a Chemical Mutagenesis Strategy. ChemBioChem, 2013, 14, 474-481.	2.6	26

#	Article	IF	CITATIONS
55	Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries. Bioorganic and Medicinal Chemistry, 2015, 23, 2629-2635.	3.0	26
56	Construction of a Shapeâ€Diverse Fragment Set: Design, Synthesis and Screen against Auroraâ€A Kinase. Chemistry - A European Journal, 2019, 25, 6831-6839.	3.3	26
57	A convergent rhodium-catalysed asymmetric synthesis of tetrahydroquinolines. Chemical Communications, 2014, 50, 10222-10224.	4.1	25
58	Discovery of novel FabF ligands inspired by platensimycin by integrating structure-based design with diversity-oriented synthetic accessibility. Organic and Biomolecular Chemistry, 2014, 12, 486-494.	2.8	25
59	Diastereoselective reactions of optically active Î ³ -substituted vinyl phosphine oxides. Tetrahedron Letters, 1997, 38, 3471-3474.	1.4	22
60	Cloning, over-expression, purification, and characterisation of N-acetylneuraminate synthase from Streptococcus agalactiae. Protein Expression and Purification, 2003, 27, 346-356.	1.3	22
61	Scanning conformational space with a library of stereo- and regiochemically diverse aminoglycoside derivatives: the discovery of new ligands for RNA hairpin sequences. Organic and Biomolecular Chemistry, 2007, 5, 1081.	2.8	22
62	Fragment-oriented synthesis: β-elaboration of cyclic amine fragments using enecarbamates as platform intermediates. Chemical Communications, 2020, 56, 8802-8805.	4.1	22
63	Exploitation of the Ugi–Joullié Reaction in the Synthesis of Libraries of Drug-Like Bicyclic Hydantoins. Synthesis, 2015, 47, 2391-2406.	2.3	21
64	Modular Synthesis of Diverse Natural Product‣ike Macrocycles: Discovery of Hits with Antimycobacterial Activity. Chemistry - A European Journal, 2017, 23, 7207-7211.	3.3	21
65	Stereospecific conversion of (1R*,3S*)- and (1R*,3R*)-3-cyclohexyl-1-phenylpropane-1,3-diol into the corresponding 2,4-disubstituted oxetanes. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 711-722.	1.3	20
66	An efficient method for synthesising unsymmetrical silaketals: substrates for ring-closing, including macrocycle-closing, metathesis. Organic and Biomolecular Chemistry, 2008, 6, 1734.	2.8	20
67	Synthesis of macrocyclic precursors of lankacidins using Stille reactions of 4-(2-iodo-alkenyl)azetidinones and related compounds for ring closure. Tetrahedron, 2010, 66, 6613-6625.	1.9	20
68	Towards "bionic―proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics. Chemical Communications, 2016, 52, 5421-5424.	4.1	20
69	Identification and characterization of important residues in the catalytic mechanism of CMPâ€Neu5Ac synthetase from <i>Neisseria meningitidis</i> . FEBS Journal, 2010, 277, 2779-2790.	4.7	19
70	Synthesis of Skeletally Diverse Alkaloid‣ike Small Molecules. European Journal of Organic Chemistry, 2011, 2011, 2354-2359.	2.4	19
71	Evaluation of fluoropyruvate as nucleophile in reactions catalysed by N-acetyl neuraminic acid lyase variants: scope, limitations and stereoselectivity. Organic and Biomolecular Chemistry, 2016, 14, 105-112.	2.8	19
72	Chiral phosphine oxides and chiral esters in stereoselective intermolecular acylation reactions of phosphine oxides. Tetrahedron Letters, 1996, 37, 7465-7468.	1.4	18

#	Article	IF	CITATIONS
73	A two-directional synthesis of the C58–C71fragment of palytoxin. Organic and Biomolecular Chemistry, 2004, 2, 373-386.	2.8	18
74	Remarkably Slow Rotation about a Single Bond between an sp3-Hybridised Carbon Atom and an Aromatic Ring withoutorthoSubstituents. Chemistry - A European Journal, 2009, 15, 2185-2189.	3.3	18
75	Identification of stable S-adenosylmethionine (SAM) analogues derivatised with bioorthogonal tags: effect of ligands on the affinity of the E. colimethionine repressor, MetJ, for its operator DNA. Organic and Biomolecular Chemistry, 2009, 7, 635-638.	2.8	18
76	An Enantio―and Diastereoselective Chemoenzymatic Synthesis of αâ€Fluoro βâ€Hydroxy Carboxylic Esters. Angewandte Chemie, 2016, 128, 6879-6882.	2.0	18
77	Design and synthesis of a fragment set based on twisted bicyclic lactams. Bioorganic and Medicinal Chemistry, 2018, 26, 3030-3033.	3.0	18
78	Desymmetrisation of meso difuryl alcohols, diols and their derivatives: complementary directed and undirected asymmetric dihydroxylation reactions. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1631-1643.	1.3	17
79	Synthesis of highly functionalized oligobenzamide proteomimetic foldamers by late stage introduction of sensitive groups. Organic and Biomolecular Chemistry, 2016, 14, 3782-3786.	2.8	17
80	Evaluierung neuer Reaktionen zur Steuerung der Wirkstoffâ€Forschung: ein Eignungstest. Angewandte Chemie, 2016, 128, 13850-13857.	2.0	17
81	Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Medicinal Chemistry, 2021, 12, 353-362.	3.9	17
82	Towards complete stereochemical control: complementary methods for the synthesis of six diastereoisomeric monosaccharide mimetics. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1444-1454.	1.3	16
83	Synthesis of a library of stereo- and regiochemically diverse aminoglycoside derivatives. Organic and Biomolecular Chemistry, 2005, 3, 2776.	2.8	16
84	Development of an Approach to the Synthesis of the ABC Ring System of Hemibrevetoxin B. Organic Letters, 2006, 8, 4231-4234.	4.6	16
85	Development of an organo- and enzyme-catalysed one-pot, sequential three-component reaction. Tetrahedron, 2012, 68, 7719-7722.	1.9	16
86	Stapled Peptides as HIFâ€1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry - A European Journal, 2020, 26, 7638-7646.	3.3	16
87	Sequential kinetic resolution of C2-symmetric compounds as a key step in two-directional synthesis: structural requirements for efficient resolution of difuryl diols. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2403-2413.	1.3	15
88	A stereodivergent, two-directional synthesis of stereoisomeric C-linked disaccharide mimetics. Organic and Biomolecular Chemistry, 2003, 1, 338-349.	2.8	15
89	Synthesis of 1,4,5 trisubstituted Î ³ -lactams via a 3-component cascade reaction. Bioorganic and Medicinal Chemistry, 2015, 23, 2695-2698.	3.0	15
90	Modular synthesis of thirty lead-like scaffolds suitable for CNS drug discovery. Chemical Communications, 2017, 53, 12345-12348.	4.1	15

#	Article	IF	CITATIONS
91	Realisation of small molecule libraries based on frameworks distantly related to natural products. Organic and Biomolecular Chemistry, 2018, 16, 3160-3167.	2.8	15
92	Synthesis and evaluation of the performance of a small molecule library based on diverse tropane-related scaffolds. Bioorganic and Medicinal Chemistry, 2020, 28, 115442.	3.0	15
93	Asymmetric addition of Davies's chiral lithium amide to prochiral vinyl phosphine oxides. Tetrahedron Letters, 1998, 39, 1637-1640.	1.4	14
94	A method for the stereospecific conversion of 1,3-diols into oxetanes. Tetrahedron Letters, 1999, 40, 8679-8683.	1.4	14
95	Synthesis and investigation of the configurational stability of some dimethylammonium borate salts. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 4403-4408.	1.3	14
96	Methods for the synthesis of polyhydroxylated piperidines by diastereoselective dihydroxylation: Exploitation in the two-directional synthesis of aza-C-linked disaccharide derivatives. Beilstein Journal of Organic Chemistry, 2005, 1, 2.	2.2	14
97	A Fluorous-Tagged "Safety Catch―Linker for Preparing Heterocycles by Ring-Closing Metathesis. Organic Letters, 2009, 11, 915-918.	4.6	14
98	Innovative approaches to the design and synthesis of small molecule libraries. Bioorganic and Medicinal Chemistry, 2015, 23, 2613.	3.0	14
99	A general, two-directional synthesis of C-(1→6)-linked disaccharide mimetics: synthesis from non-carbohydrate based starting materials. Chemical Communications, 2001, , 695-696.	4.1	13
100	Evaluation of alternative approaches for the synthesis of macrocyclic bisindolylmaleimides. Organic and Biomolecular Chemistry, 2004, 2, 2874.	2.8	13
101	Synthesis of screening substrates for the directed evolution of sialic acid aldolase: towards tailored enzymes for the preparation of influenza A sialidase inhibitor analogues. Organic and Biomolecular Chemistry, 2005, 3, 1795.	2.8	13
102	Aminomethylhydroxylation of alkenes: Exploitation in the synthesis of scaffolds for small molecule libraries. Bioorganic and Medicinal Chemistry, 2015, 23, 2736-2740.	3.0	13
103	Translation of innovative chemistry into screening libraries: an exemplar partnership from the European Lead Factory. Drug Discovery Today, 2018, 23, 1578-1583.	6.4	13
104	Desymmetrisation of a Centrosymmetric Molecule by Carbon–Carbon Bond Formation: Asymmetric Aldol Reactions of a Centrosymmetric Dialdehyde. Chemistry - A European Journal, 2007, 13, 5857-5861.	3.3	12
105	Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks. Beilstein Journal of Organic Chemistry, 2013, 9, 775-785.	2.2	12
106	Aldolase-catalysed stereoselective synthesis of fluorinated small molecules. Current Opinion in Chemical Biology, 2017, 37, 33-38.	6.1	12
107	Embarking on a Chemical Space Odyssey. Journal of Medicinal Chemistry, 2017, 60, 3591-3593.	6.4	12
108	Synthesis of βâ€Diamine Building Blocks by Photocatalytic Hydroamination of Enecarbamates with Amines, Ammonia and Nâ^'H Heterocycles. Chemistry - A European Journal, 2020, 26, 14861-14865.	3.3	12

#	Article	IF	CITATIONS
109	A general, two-directional approach to aza-C-(1 ? 1)-linked disaccharide mimetics. Chemical Communications, 2005, , 1646.	4.1	11
110	Tandem Mannich/Diels–Alder reactions for the synthesis of indole compound libraries. RSC Advances, 2016, 6, 46654-46657.	3.6	11
111	A metal-catalyzed enyne-cyclization step for the synthesis of bi- and tricyclic scaffolds amenable to molecular library production. Organic and Biomolecular Chemistry, 2016, 14, 6947-6950.	2.8	11
112	Activityâ€Ðirected Synthesis of Inhibitors of the p53/ h DM2 Protein–Protein Interaction. Chemistry - A European Journal, 2020, 26, 10682-10689.	3.3	11
113	Directed and undirected asymmetric dihydroxylation reactions: application in the synthesis of a C-linked analogue of allolactose. Chemical Communications, 2001, , 2076-2077.	4.1	10
114	Exploiting predisposition in the stereoselective synthesis of mono-, bi- and tetracyclic oxygen heterocycles: Equilibration between, and trapping of, alternative di- and tetraacetals. Organic and Biomolecular Chemistry, 2003, 1, 2393.	2.8	10
115	The development of strategies and methods for the synthesis of biologically active compounds. New Journal of Chemistry, 2004, 28, 771.	2.8	10
116	Computational Mapping of Dirhodium(II) Catalysts. Chemistry - A European Journal, 2021, 27, 2402-2409.	3.3	10
117	Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 278-284.	2.2	9
118	Activity-directed expansion of a series of antibacterial agents. Chemical Communications, 2020, 56, 8047-8050.	4.1	9
119	Alkenyl diols by E-selective Horner-Wittig elimination: Formal synthesis of any isomer (RR, RS, SR or) Tj ETQq1 1 (1633-1636.).784314 1.4	rgBT /Overlo 8
120	Configurational Stability of Bisindolylmaleimide Cyclophanes: From Conformers to the First Configurationally Stable, Atropisomeric Bisindolylmaleimides. Chemistry - A European Journal, 2005, 11, 6277-6285.	3.3	8
121	Catalytic machinery of enzymes expanded. Nature, 2019, 570, 172-173.	27.8	7
122	A radical approach to diverse meroterpenoids. Nature Chemistry, 2020, 12, 109-111.	13.6	7
123	Asymmetric double ring-opening of a C2h-symmetric bis-epoxide: improved enantiomeric excess of the product through enantioselective desymmetrisation and †proof-reading' steps. Organic and Biomolecular Chemistry, 2005, 3, 2350.	2.8	6
124	Synthesis of 3-Sulfonyloxypyridines: Oxidative Ring Expansion of α-FurylÂsulfonamides and N→O Sulfonyl Transfer. Synlett, 2007, 2007, 1043-1046.	1.8	6
125	Regioselective side-chain amination of 2-alkyl azacycles by radical translocation: total synthesis of tetraponerine T8. Chemical Communications, 2021, 57, 919-922.	4.1	6
126	Efficient Approaches for the Synthesis of Diverse α-Diazo Amides. Synthesis, 2020, 52, 1695-1706.	2.3	5

#	Article	IF	CITATIONS
127	Query-guided protein–protein interaction inhibitor discovery. Chemical Science, 2021, 12, 4753-4762.	7.4	5
128	Towards optimizing peptide-based inhibitors of protein–protein interactions: predictive saturation variation scanning (PreSaVS). RSC Chemical Biology, 2021, 2, 1474-1478.	4.1	5
129	Efficient unified synthesis of diverse bridged polycyclic scaffolds using a complexity-generating â€~stitching' annulation approach. Chemical Communications, 2021, 57, 599-602.	4.1	4
130	Unified synthesis of diverse building blocks for application in the discovery of bioactive small molecules. Tetrahedron, 2019, 75, 130513.	1.9	3
131	Activityâ€Directed Synthesis: A Flexible Approach for Lead Generation. ChemMedChem, 2020, 15, 1776-1782.	3.2	3
132	Reaching the Target: Small Molecules Aim to Probe Barrier Quality. ChemBioChem, 2005, 6, 1953-1955.	2.6	1
133	Stuart Warren (24 Dec 1938–22 Mar 2020). Organic and Biomolecular Chemistry, 2020, 18, 7236-7237.	2.8	1
134	A unified "top-down―approach for the synthesis of diverse lead-like molecular scaffolds. Bioorganic and Medicinal Chemistry Letters, 2022, 62, 128631.	2.2	1
135	Frontispiece: Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
136	Frontispiz: Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0
137	Expansion of the structure–activity relationships of BACE1 inhibitors by harnessing diverse building blocks prepared using a unified synthetic approach. MedChemComm, 2019, 10, 616-620.	3.4	Ο