## Harumichi Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/904139/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Acoustic Properties of a Metal Close to Its Melting Point, as Measured by Laser Ultrasonics. Materials<br>Transactions, 2022, 63, 522-528.                                                              | 1.2 | Ο         |
| 2  | Propagation characteristics of acoustic emission waves in liquid media in near-field. Precision Engineering, 2022, 77, 220-226.                                                                         | 3.4 | 3         |
| 3  | DC Arc Plasma Treatment for Defect Reduction in WC-Co Granulated Powder. Metals, 2020, 10, 975.                                                                                                         | 2.3 | 4         |
| 4  | Laser Ultrasonic Technique to Non-Destructively Detect Cracks on a Ni-Based Self-Fluxing Alloy<br>Fabricated Using Directed Energy Deposition (DED). Materials Transactions, 2020, 61, 1994-2001.       | 1.2 | 3         |
| 5  | Guided waves propagating in a water-filled stainless steel pipe. Japanese Journal of Applied Physics, 2014, 53, 07KC13.                                                                                 | 1.5 | 3         |
| 6  | Analytical Method for Guided Waves Propagating in a Fluid-Filled Pipe with Attenuation. Japanese<br>Journal of Applied Physics, 2013, 52, 07HC07.                                                       | 1.5 | 8         |
| 7  | Theoretical and Simulated Analysis of Guided Waves Propagating in Fluid-Filled Pipes. Japanese Journal of Applied Physics, 2010, 49, 07HC08.                                                            | 1.5 | 6         |
| 8  | Laser-Anneal of Metal-Based Micro Optical Scanner Derived by Aerosol Deposition. Key Engineering<br>Materials, 2008, 388, 195-198.                                                                      | 0.4 | 0         |
| 9  | Theoretical Investigation of Guide Wave Flowmeter. Japanese Journal of Applied Physics, 2007, 46, 4521.                                                                                                 | 1.5 | 12        |
| 10 | High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sensors and Actuators A: Physical, 2007, 135, 86-91.  | 4.1 | 49        |
| 11 | Piezoelectric Film Response Studied with Finite Element Method. Journal of the American Ceramic Society, 2006, 89, 3715-3720.                                                                           | 3.8 | 5         |
| 12 | Theoretical and Experimental Investigation of Propagation of Guide Waves in Cylindrical Pipe Filled with Fluid. Japanese Journal of Applied Physics, 2006, 45, 4573-4576.                               | 1.5 | 21        |
| 13 | Optical scanning devices based on PZT thick films formed by aerosol deposition method. , 2005, 6037, 474.                                                                                               |     | 1         |
| 14 | High-Speed Optical Microscanner Driven with Resonation of Lam Waves Using Pb(Zr,Ti)O3Thick Films<br>Formed by Aerosol Deposition. Japanese Journal of Applied Physics, 2005, 44, 7072-7077.             | 1.5 | 60        |
| 15 | Finite Element Method Analysis of Evaluation of Surface Micro Cracks Using Laser Ultrasound<br>Generated by Phase Velocity Scanning Method. Japanese Journal of Applied Physics, 2003, 42, 3184-3188.   | 1.5 | 11        |
| 16 | Titanium?Silicon?Nitrogen Composites with High Wear Resistance in Water and in Artificial Sea Water.<br>Journal of the American Ceramic Society, 2002, 85, 2373-2375.                                   | 3.8 | 8         |
| 17 | Advanced micromachine fabrication using ion implantation. Surface and Coatings Technology, 2000, 128-129, 71-75.                                                                                        | 4.8 | 8         |
| 18 | Detection of Defects in Micro-Machine Elements by Using Acoustic Waves Generated by Phase Velocity<br>Scanning of Laser Interference Fringes. Japanese Journal of Applied Physics, 2000, 39, 3093-3096. | 1.5 | 2         |

Нагимісні Sato

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Increasing the frequency of surface acoustic waves generated by phase velocity scanning of laser interference fringes. Review of Scientific Instruments, 1999, 70, 4435-4436.               | 1.3 | 2         |
| 20 | Estimation of Elastic Constants from Surface Acoustic Wave Velocity by Inverse Analysis using the Downhill Simplex Method. Japanese Journal of Applied Physics, 1998, 37, 3116-3119.        | 1.5 | 7         |
| 21 | In Situ Observation of Sintered Iron and Carbon Steel Compacts Using a Low-Temperature Acoustic Microscope. Japanese Journal of Applied Physics, 1997, 36, 3260-3264.                       | 1.5 | 3         |
| 22 | Evaluation of Standard Defects Using Surface Acoustic Waves Generated by Phase Velocity Scanning of Laser Interference Fringes. Japanese Journal of Applied Physics, 1997, 36, 3267-3269.   | 1.5 | 8         |
| 23 | Evaluation of Surface Defects Using Surface Acoustic Waves Generated by Phase Velocity Scanning of<br>Laser Interference Fringes. Japanese Journal of Applied Physics, 1996, 35, 3066-3069. | 1.5 | 9         |
| 24 | Surface Acoustic Wave Velocity and Attenuation Dispersion Measurement by Phase Velocity Scanning of Laser Interference Fringes. Japanese Journal of Applied Physics, 1996, 35, 3062-3065.   | 1.5 | 19        |
| 25 | Acoustic Imaging of Plate Thickness and Sound Velocity during Tensile Testing at Low Temperature.<br>Japanese Journal of Applied Physics, 1994, 33, 6373-6378.                              | 1.5 | 5         |