Xinliang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9041234/publications.pdf

Version: 2024-02-01

172 339 96,886 685 154 285 citations g-index h-index papers 743 743 743 62527 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473.	13.7	3,144
2	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
3	3D Nitrogen-Doped Graphene Aerogel-Supported Fe ₃ O ₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 9082-9085.	6.6	1,967
4	Threeâ€Dimensional Nitrogen and Boron Coâ€doped Graphene for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2012, 24, 5130-5135.	11.1	1,270
5	Nitrogenâ€Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction. Angewandte Chemie - International Edition, 2010, 49, 2565-2569.	7.2	1,223
6	New advances in nanographene chemistry. Chemical Society Reviews, 2015, 44, 6616-6643.	18.7	1,212
7	Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, 2014, 136, 6083-6091.	6.6	1,181
8	Efficient Synthesis of Heteroatom (N or S)â€Doped Graphene Based on Ultrathin Graphene Oxideâ€Porous Silica Sheets for Oxygen Reduction Reactions. Advanced Functional Materials, 2012, 22, 3634-3640.	7.8	1,180
9	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€Splitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707.	7.2	1,159
10	On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016, 531, 489-492.	13.7	1,154
11	Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 16002-16005.	6.6	1,119
12	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
13	Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4, 2487.	5.8	1,104
14	Grapheneâ€Based Carbon Nitride Nanosheets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reactions. Angewandte Chemie - International Edition, 2011, 50, 5339-5343.	7.2	1,024
15	Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 2012, 134, 19532-19535.	6.6	1,024
16	Fabrication of Grapheneâ€Encapsulated Oxide Nanoparticles: Towards Highâ€Performance Anode Materials for Lithium Storage. Angewandte Chemie - International Edition, 2010, 49, 8408-8411.	7.2	1,005
17	Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5, 4973.	5.8	921
18	Crumpled Nitrogenâ€Doped Graphene Nanosheets with Ultrahigh Pore Volume for Highâ€Performance Supercapacitor. Advanced Materials, 2012, 24, 5610-5616.	11.1	880

#	Article	IF	CITATIONS
19	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	5.8	813
20	Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. Journal of the American Chemical Society, 2011, 133, 15221-15223.	6.6	794
21	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy and Environmental Science, 2016, 9, 478-483.	15.6	774
22	Composites of Graphene with Large Aromatic Molecules. Advanced Materials, 2009, 21, 3191-3195.	11.1	750
23	3D Graphene Foams Crossâ€linked with Preâ€encapsulated Fe ₃ O ₄ Nanospheres for Enhanced Lithium Storage. Advanced Materials, 2013, 25, 2909-2914.	11.1	727
24	From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 7640-7654.	7.2	725
25	Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials, 2011, 23, 2779-2795.	11.1	708
26	Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Nano, 2012, 6, 9541-9550.	7.3	640
27	Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 849-864.	11.1	624
28	Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chemical Communications, 2009, , 6919.	2.2	610
29	Accelerated Hydrogen Evolution Kinetics on NiFeâ€Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279.	11.1	601
30	Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions. Advanced Materials, 2009, 21, 1679-1683.	11.1	600
31	Catalyst-free Preparation of Melamine-Based Microporous Polymer Networks through Schiff Base Chemistry. Journal of the American Chemical Society, 2009, 131, 7216-7217.	6.6	579
32	Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nature Communications, 2015, 6, 7992.	5.8	575
33	Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Materials, 2009, 8, 421-426.	13.3	555
34	Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano, 2013, 7, 3598-3606.	7.3	532
35	Support and Interface Effects in Waterâ€Splitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	11.1	531
36	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	15.6	528

3

#	Article	IF	CITATIONS
37	2D Sandwichâ€like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Advanced Materials, 2011, 23, 5574-5580.	11.1	526
38	Nitrogenâ€Enriched Coreâ€Shell Structured Fe/Fe ₃ C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 1399-1404.	11.1	517
39	Largeâ€Area, Freeâ€Standing, Twoâ€Dimensional Supramolecular Polymer Singleâ€Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 12058-12063.	7.2	514
40	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
41	Sandwichâ€Like, Grapheneâ€Based Titania Nanosheets with High Surface Area for Fast Lithium Storage. Advanced Materials, 2011, 23, 3575-3579.	11.1	503
42	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	15.6	503
43	Nanographeneâ€Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage. Advanced Materials, 2010, 22, 838-842.	11.1	473
44	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	6.6	468
45	Grapheneâ€Based Nanosheets with a Sandwich Structure. Angewandte Chemie - International Edition, 2010, 49, 4795-4799.	7.2	457
46	Nitrogenâ€Doped Carbon Nanosheets with Sizeâ€Defined Mesopores as Highly Efficient Metalâ€Free Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2014, 53, 1570-1574.	7.2	457
47	Twoâ€Dimensional Soft Nanomaterials: A Fascinating World of Materials. Advanced Materials, 2015, 27, 403-427.	11.1	437
48	Highâ€Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrinâ€Based Conjugated Mesoporous Polymers. Advanced Materials, 2014, 26, 1450-1455.	11.1	425
49	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	5.8	424
50	Efficient alkaline hydrogen evolution on atomically dispersed Ni–N _x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy and Environmental Science, 2019, 12, 149-156.	15.6	416
51	Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013, 62, 296-301.	5.4	415
52	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	7.3	410
53	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€6plitting Activity. Angewandte Chemie, 2016, 128, 6814-6819.	1.6	403
54	Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage. ACS Nano, 2012, 6, 8349-8356.	7.3	402

#	Article	IF	Citations
55	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	13.7	397
56	Fluorideâ€Free Synthesis of Twoâ€Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie - International Edition, 2018, 57, 15491-15495.	7.2	393
57	Nitrogenâ€Doped Porous Carbon Superstructures Derived from Hierarchical Assembly of Polyimide Nanosheets. Advanced Materials, 2016, 28, 1981-1987.	11.1	390
58	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
59	Flexible Allâ€Solidâ€State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene. Advanced Energy Materials, 2017, 7, 1601847.	10.2	379
60	Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nature Communications, 2019, 10, 2920.	5.8	373
61	Molybdenum Carbide-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Electrocatalysts for Water Splitting in Alkaline Media. ACS Nano, 2017, 11, 3933-3942.	7.3	367
62	Ultraflexible Inâ€Plane Microâ€Supercapacitors by Direct Printing of Solutionâ€Processable Electrochemically Exfoliated Graphene. Advanced Materials, 2016, 28, 2217-2222.	11.1	366
63	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today, 2019, 24, 103-119.	6.2	357
64	A two-dimensional conjugated polymer framework with fully sp ² -bonded carbon skeleton. Polymer Chemistry, 2016, 7, 4176-4181.	1.9	350
65	Patterned Graphene Electrodes from Solutionâ€Processed Graphite Oxide Films for Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 3488-3491.	11.1	344
66	High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nature Materials, 2018, 17, 1027-1032.	13.3	341
67	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
68	Zincâ€Mediated Template Synthesis of Feâ€N Electrocatalysts with Densely Accessible Feâ€N <i>></i> > <active 2020,="" 32,="" advanced="" e1907399.<="" efficient="" for="" materials,="" oxygen="" reduction.="" sites="" td=""><td>11.1</td><td>319</td></active>	11.1	319
69	Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature Communications, 2020, 11, 1409.	5.8	317
70	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	5.8	312
71	Layer-by-Layer Assembly and UV Photoreduction of Graphene–Polyoxometalate Composite Films for Electronics. Journal of the American Chemical Society, 2011, 133, 9423-9429.	6.6	304
72	Superlubricity of graphene nanoribbons on gold surfaces. Science, 2016, 351, 957-961.	6.0	302

#	Article	IF	Citations
7 3	Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 6097-6103.	6.6	299
74	Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. National Science Review, 2014, 1, 277-292.	4.6	298
7 5	Self-Assembled Fe ₂ O ₃ /Graphene Aerogel with High Lithium Storage Performance. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3764-3769.	4.0	296
76	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. Journal of the American Chemical Society, 2017, 139, 4506-4512.	6.6	294
77	Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: Towards Highâ€Performance Anode Materials for Lithium Ion Batteries. ChemSusChem, 2010, 3, 236-239.	3.6	290
78	Alternating Stacked Grapheneâ€Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for Highâ€Energy Microâ€Supercapacitors. Advanced Materials, 2015, 27, 4054-4061.	11.1	290
79	Layerâ€byâ€Layer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	11.1	289
80	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Journal of the American Chemical Society, 2015, 137, 13927-13932.	6.6	288
81	Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nature Communications, 2016, 7, 13461.	5 . 8	283
82	Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chemical Society Reviews, 2012, 41, 6160.	18.7	282
83	Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization. Pure and Applied Chemistry, 2009, 81, 2203-2224.	0.9	281
84	Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano, 2017, 11, 8249-8256.	7.3	280
85	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	7.2	278
86	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performand Cathode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 849-853.	ce _{7.2}	275
87	Vertically Aligned MoS ₂ Nanosheets Patterned on Electrochemically Exfoliated Graphene for Highâ€Performance Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1702254.	10.2	274
88	Vertically Oriented Graphene Bridging Activeâ€Layer/Currentâ€Collector Interface for Ultrahigh Rate Supercapacitors. Advanced Materials, 2013, 25, 5799-5806.	11.1	270
89	On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. ACS Nano, 2017, 11, 1380-1388.	7.3	270
90	Synergetic Contribution of Boron and Fe–N _{<i>x</i>} Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018, 3, 252-260.	8.8	269

#	Article	IF	CITATIONS
91	Znâ€lon Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	11.1	266
92	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
93	On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nature Chemistry, 2019, 11, 994-1000.	6.6	262
94	Newâ∈Generation Graphene from Electrochemical Approaches: Production and Applications. Advanced Materials, 2016, 28, 6213-6221.	11.1	256
95	Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C ₃ N ₄ Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation. Nano Letters, 2016, 16, 2268-2277.	4.5	256
96	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
97	Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 2015, 27, 669-675.	11.1	251
98	Two-dimensional conjugated metal–organic frameworks (2D <i>c</i> hoFs): chemistry and function for MOFtronics. Chemical Society Reviews, 2021, 50, 2764-2793.	18.7	242
99	Fluorideâ€Free Synthesis of Twoâ€Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie, 2018, 130, 15717-15721.	1.6	241
100	Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy lonogel-Based Microsupercapacitors. Journal of the American Chemical Society, 2018, 140, 8198-8205.	6.6	240
101	Dithieno[2,3â€∢i>d;2′,3′â€∢i>dà6€²]benzo[1,2â€∢i>b;4,5â€xi>bà6²]dithiophene (DTBDT) as for Highâ€Performance, Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 213-216.	Semicono	ductor 237
102	Ultrathin Printable Graphene Supercapacitors with AC Lineâ€Filtering Performance. Advanced Materials, 2015, 27, 3669-3675.	11.1	237
103	Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chemical Communications, 2010, 46, 8932.	2.2	235
104	Hybrid Silver Nanowire and Grapheneâ€Based Solutionâ€Processed Transparent Electrode for Organic Optoelectronics. Advanced Functional Materials, 2018, 28, 1706010.	7.8	235
105	A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-lon Energy Storage Devices. Journal of the American Chemical Society, 2020, 142, 19570-19578.	6.6	232
106	Graphene Nanoribbons by Chemists: Nanometerâ€Sized, Soluble, and Defectâ€Free. Angewandte Chemie - International Edition, 2011, 50, 2540-2543.	7.2	228
107	Screenâ€Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks. Advanced Energy Materials, 2013, 3, 1035-1040.	10.2	228
108	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	6.6	227

#	Article	IF	CITATIONS
109	Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology, 2020, 15, 22-28.	15.6	227
110	Graphene Coupled Schiffâ€base Porous Polymers: Towards Nitrogenâ€enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Advanced Materials, 2014, 26, 3081-3086.	11.1	224
111	Twoâ€Dimensional Sandwichâ€Type, Grapheneâ€Based Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2013, 52, 9668-9672.	7.2	220
112	Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting. Advanced Materials, 2017, 29, 1701589.	11.1	219
113	Charge-Carrier Transporting Graphene-Type Molecules. Chemistry of Materials, 2011, 23, 554-567.	3.2	218
114	Termini of Bottom-Up Fabricated Graphene Nanoribbons. Journal of the American Chemical Society, 2013, 135, 2060-2063.	6.6	214
115	Sulfurâ€Enriched Conjugated Polymer Nanosheet Derived Sulfur and Nitrogen coâ€Doped Porous Carbon Nanosheets as Electrocatalysts for Oxygen Reduction Reaction and Zinc–Air Battery. Advanced Functional Materials, 2016, 26, 5893-5902.	7.8	214
116	Ambientâ€Stable Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie - International Edition, 2021, 60, 8689-8693.	7.2	212
117	Conjugated Microporous Polymers with Dimensionalityâ€Controlled Heterostructures for Green Energy Devices. Advanced Materials, 2015, 27, 3789-3796.	11.1	210
118	A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nature Communications, 2018, 9, 2637.	5.8	210
119	Atomically Defined Undercoordinated Active Sites for Highly Efficient CO ₂ Electroreduction. Advanced Functional Materials, 2020, 30, 1907658.	7.8	210
120	Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal–Organic Frameworks for Electrocatalytic H ₂ Production. Chemistry - A European Journal, 2017, 23, 2255-2260.	1.7	208
121	Giant edge state splitting at atomically precise graphene zigzag edges. Nature Communications, 2016, 7, 11507.	5.8	207
122	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	8.3	202
123	Tuning the Columnar Organization of Discotic Polycyclic Aromatic Hydrocarbons. Advanced Materials, 2010, 22, 3634-3649.	11.1	200
124	Thiophene-based conjugated oligomers for organic solar cells. Journal of Materials Chemistry, 2011, 21, 17590.	6.7	195
125	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	5.8	195
126	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6, 8817.	5.8	193

#	Article	IF	Citations
127	Synthetic Twoâ€Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Advanced Materials, 2016, 28, 6529-6545.	11.1	192
128	A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Advanced Materials, 2019, 31, e1901478.	11.1	192
129	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
130	Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemical Society, 2012, 134, 18169-18172.	6.6	185
131	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
132	A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Scientific Reports, 2012, 2, 921.	1.6	183
133	Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order. Journal of the American Chemical Society, 2015, 137, 14525-14532.	6.6	181
134	Benzoâ€Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties. Angewandte Chemie - International Edition, 2017, 56, 3374-3378.	7.2	177
135	Graphene: A Twoâ€Dimensional Platform for Lithium Storage. Small, 2013, 9, 1173-1187.	5.2	176
136	Strongly Coupled 3D Hybrids of Nâ€doped Porous Carbon Nanosheet/CoNi Alloyâ€Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. Small, 2015, 11, 5940-5948.	5.2	176
137	Metalâ€Phosphideâ€Containing Porous Carbons Derived from an Ionicâ€Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting. Advanced Functional Materials, 2015, 25, 3899-3906.	7.8	176
138	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 1627-1633.	7.2	176
139	Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance. Advanced Materials, 2017, 29, 1602960.	11.1	173
140	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	7.8	172
141	Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst. Advanced Materials, 2011, 23, 5445-5450.	11.1	171
142	Controlled Synthesis of Nâ€Doped Carbon Nanospheres with Tailored Mesopores through Selfâ€Assembly of Colloidal Silica. Angewandte Chemie - International Edition, 2015, 54, 15191-15196.	7.2	171
143	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
144	Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons. ACS Nano, 2012, 6, 2020-2025.	7.3	169

#	Article	IF	CITATIONS
145	Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. Journal of Materials Chemistry A, 2014, 2, 8288.	5.2	169
146	Synthesis and Characterization of π-Extended Triangulene. Journal of the American Chemical Society, 2019, 141, 10621-10625.	6.6	165
147	Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation. Chemical Communications, 2010, 46, 6243.	2.2	164
148	Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances, 2015, 5, 42141-42161.	1.7	164
149	Dualâ€Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size. Advanced Materials, 2016, 28, 8365-8370.	11.1	163
150	Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy and Environmental Science, 2013, 6, 2447.	15.6	161
151	Use of Organic Precursors and Graphenes in the Controlled Synthesis of Carbon-Containing Nanomaterials for Energy Storage and Conversion. Accounts of Chemical Research, 2013, 46, 116-128.	7.6	158
152	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. Advanced Materials, 2017, 29, 1604480.	11.1	157
153	Construction of Twoâ€Dimensional MoS ₂ /CdS p–n Nanohybrids for Highly Efficient Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2014, 20, 10632-10635.	1.7	156
154	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5.8	155
155	Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. Journal of the American Chemical Society, 2020, 142, 12903-12915.	6.6	154
156	Stimulusâ€Responsive Microâ€Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window. Advanced Materials, 2017, 29, 1604491.	11.1	153
157	Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. Journal of Materials Chemistry C, 2013, 1, 38-41.	2.7	151
158	Bottomâ€Up Synthesis of Chemically Precise Graphene Nanoribbons. Chemical Record, 2015, 15, 295-309.	2.9	151
159	Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. Journal of the American Chemical Society, 2010, 132, 15030-15037.	6.6	150
160	Molecular Clusters in Two-Dimensional Surface-Confined Nanoporous Molecular Networks: Structure, Rigidity, and Dynamics. Journal of the American Chemical Society, 2008, 130, 7119-7129.	6.6	149
161	Thermodynamic picture of ultrafast charge transport in graphene. Nature Communications, 2015, 6, 7655.	5. 8	147
162	Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Longâ€Timeâ€Cycling Durability. Advanced Materials, 2020, 32, e1905361.	11.1	143

#	Article	IF	CITATIONS
163	Compact Coupled Graphene and Porous Polyaryltriazineâ€Derived Frameworks as High Performance Cathodes for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 1812-1816.	7.2	142
164	Grapheneâ€Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO ₂ Capture. Advanced Materials, 2013, 25, 2130-2134.	11.1	140
165	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie - International Edition, 2017, 56, 3920-3924.	7.2	140
166	Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy, 2017, 40, 27-33.	8.2	139
167	Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.	7.3	138
168	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie, 2020, 132, 1644-1650.	1.6	138
169	Exfoliation of graphene via wet chemical routes. Synthetic Metals, 2015, 210, 123-132.	2.1	135
170	On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. ACS Nano, 2018, 12, 74-81.	7. 3	135
171	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanced Materials, 2018, 30, e1800528.	11.1	135
172	Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6896-6900.	7.2	135
173	Synthesis and Controlled Self-Assembly of Covalently Linked Hexa- <i>peri</i> -hexabenzocoronene/Perylene Diimide Dyads as Models To Study Fundamental Energy and Electron Transfer Processes. Journal of the American Chemical Society, 2012, 134, 5876-5886.	6.6	134
174	Ultrafast Delamination of Graphite into Highâ€Quality Graphene Using Alternating Currents. Angewandte Chemie - International Edition, 2017, 56, 6669-6675.	7.2	134
175	Synthetic Tailoring of Graphene Nanostructures with Zigzagâ€Edged Topologies: Progress and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 23386-23401.	7.2	133
176	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	7.3	132
177	Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nature Communications, 2019, 10, 4225.	5.8	132
178	Bioinspired Waferâ€Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angewandte Chemie - International Edition, 2013, 52, 5535-5538.	7.2	129
179	Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Journal of the American Chemical Society, 2016, 138, 15488-15496.	6.6	129
180	2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2017, 29, 1700707.	11.1	129

#	Article	IF	Citations
181	Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties. Angewandte Chemie - International Edition, 2020, 59, 5637-5642.	7.2	128
182	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6858-6863.	7.2	127
183	Emerging 2D Materials Produced via Electrochemistry. Advanced Materials, 2020, 32, e1907857.	11.1	127
184	Triangle-Shaped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2007, 46, 3033-3036.	7.2	126
185	Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7742.	5.2	124
186	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	11.1	123
187	Synthesis of Stable Nanographenes with OBO-Doped Zigzag Edges Based on Tandem Demethylation-Electrophilic Borylation. Journal of the American Chemical Society, 2016, 138, 9021-9024.	6.6	123
188	Ladder-Type BN-Embedded Heteroacenes with Blue Emission. Organic Letters, 2013, 15, 5714-5717.	2.4	122
189	Synthesis of NBN-Type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif. Journal of the American Chemical Society, 2016, 138, 11606-11615.	6.6	121
190	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€Power Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	11.1	121
191	Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage. Scientific Reports, 2012, 2, 427.	1.6	119
192	A semiconducting layered metal-organic framework magnet. Nature Communications, 2019, 10, 3260.	5.8	119
193	Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano, 2018, 12, 11917-11927.	7.3	118
194	Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. Advanced Materials, 2020, 32, e2000880.	11.1	118
195	Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes. Nano Letters, 2013, 13, 5925-5930.	4.5	117
196	Polyanilineâ€Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie - International Edition, 2013, 52, 12105-12109.	7.2	117
197	Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Selfâ€Assembly of Diblock Copolymer Micelles in Solution. Small, 2016, 12, 3155-3163.	5.2	117
198	Tunable Selfâ€Assembly of Diblock Copolymers into Colloidal Particles with Triply Periodic Minimal Surfaces. Angewandte Chemie - International Edition, 2017, 56, 7135-7140.	7.2	117

#	Article	IF	CITATIONS
199	Spiro-Fused Perylene Diimide Arrays. Journal of the American Chemical Society, 2017, 139, 15914-15920.	6.6	116
200	Quantum units from the topological engineering of molecular graphenoids. Science, 2019, 366, 1107-1110.	6.0	116
201	Twoâ€Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. Angewandte Chemie - International Edition, 2020, 59, 8218-8224.	7.2	116
202	Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nature Communications, 2018, 9, 1140.	5.8	115
203	Observation of fractional edge excitations in nanographene spin chains. Nature, 2021, 598, 287-292.	13.7	115
204	Self-Assembling Thiophene Dendrimers with a Hexa- <i>peri</i> hexabenzocoronene Coreâ^'Synthesis, Characterization and Performance in Bulk Heterojunction Solar Cells. Chemistry of Materials, 2010, 22, 457-466.	3.2	113
205	Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes. ACS Chemical Neuroscience, 2011, 2, 687-693.	1.7	113
206	Towards Macroscopic Crystalline 2D Polymers. Angewandte Chemie - International Edition, 2018, 57, 13748-13763.	7.2	113
207	High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with <i>p</i> -Type Doping. Journal of the American Chemical Society, 2020, 142, 21622-21627.	6.6	113
208	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
209	Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. Journal of the American Chemical Society, 2016, 138, 12783-12786.	6.6	112
210	Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. Journal of the American Chemical Society, 2019, 141, 12011-12020.	6.6	112
211	Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111). ACS Nano, 2016, 10, 8006-8011.	7.3	111
212	Carbonâ€Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Advanced Energy Materials, 2018, 8, 1801258.	10.2	111
213	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	6.6	110
214	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	7.8	110
215	Solution Processable Fluorenyl Hexaâ€ <i>peri</i> â€hexabenzocoronenes in Organic Fieldâ€Effect Transistors and Solar Cells. Advanced Functional Materials, 2010, 20, 927-938.	7.8	109
216	B ₂ N ₂ -Dibenzo[<i>a</i> , <i>e</i>)]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties. Journal of the American Chemical Society, 2015, 137, 7668-7671.	6.6	109

#	Article	IF	CITATIONS
217	Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene-Coated Quartz. ACS Nano, 2012, 6, 10874-10883.	7.3	108
218	Controlled Self-Assembly of <i>C</i> ₃ -Symmetric Hexa- <i>peri</i> -hexabenzocoronenes with Alternating Hydrophilic and Hydrophobic Substituents in Solution, in the Bulk, and on a Surface. Journal of the American Chemical Society, 2009, 131, 4439-4448.	6.6	107
219	Threeâ€Dimensionally Arranged Cyclic <i>p</i> à€Hexaphenylbenzene: Toward a Bottomâ€Up Synthesis of Sizeâ€Defined Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16621-16625.	1.7	107
220	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, $2017, 1, 1700090$.	4.6	106
221	Topological Defect-Induced Magnetism in a Nanographene. Journal of the American Chemical Society, 2020, 142, 1147-1152.	6.6	106
222	Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Communications, 2010, 1, 31.	5.8	104
223	Phthalocyanineâ€Based 2D Conjugated Metalâ€Organic Framework Nanosheets for Highâ€Performance Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 2002664.	7.8	104
224	Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology, 2009, 20, 434007.	1.3	103
225	Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons. Journal of the American Chemical Society, 2014, 136, 7555-7558.	6.6	103
226	Cyclotrimerization of arylalkynes on Au(111). Chemical Communications, 2014, 50, 11200-11203.	2.2	103
227	Tetrabenzo[a,f,j,o]perylene: A Polycyclic Aromatic Hydrocarbon With An Openâ€Shell Singlet Biradical Ground State. Angewandte Chemie - International Edition, 2015, 54, 12442-12446.	7.2	103
228	Unexpected Scholl Reaction of $6,7,13,14$ -Tetraarylbenzo[$\langle i \rangle k \langle i \rangle$] tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 2602-2608.	6.6	103
229	Demonstration of a Broadband Photodetector Based on a Twoâ€Dimensional Metal–Organic Framework. Advanced Materials, 2020, 32, e1907063.	11.1	103
230	Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13959-13966.	3.3	102
231	Oxygen- and Sulfur-Containing Positively Charged Polycyclic Aromatic Hydrocarbons. Organic Letters, 2009, 11, 5686-5689.	2.4	101
232	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	15.6	101
233	Hexa-peri-hexabenzocoronenes by Efficient Oxidative Cyclodehydrogenation:  The Role of the Oligophenylene Precursors. Organic Letters, 2006, 8, 1145-1148.	2.4	100
234	Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology, 2011, 22, 275719.	1.3	100

#	Article	IF	CITATIONS
235	Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	5.8	100
236	Thiopheneâ€Bridged Donor–Acceptor sp ² â€Carbonâ€Linked 2D Conjugated Polymers as Photocathodes for Water Reduction. Advanced Materials, 2021, 33, e2006274.	11.1	100
237	Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-Based Two-Dimensional Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 19992-20000.	6.6	100
238	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	7.3	99
239	Quantum Dots in Graphene Nanoribbons. Nano Letters, 2017, 17, 4277-4283.	4.5	99
240	A Delamination Strategy for Thinly Layered Defectâ€Free Highâ€Mobility Black Phosphorus Flakes. Angewandte Chemie - International Edition, 2018, 57, 4677-4681.	7.2	98
241	Toward Full Zigzag-Edged Nanographenes: <i>peri</i> Circumanthracene. Journal of the American Chemical Society, 2018, 140, 6240-6244.	6.6	98
242	Highly Crystalline and Semiconducting Imineâ€Based Twoâ€Dimensional Polymers Enabled by Interfacial Synthesis. Angewandte Chemie - International Edition, 2020, 59, 6028-6036.	7.2	98
243	Nanoarray of Polycyclic Aromatic Hydrocarbons and Carbon Nanotubes for Accurate and Predictive Detection in Real-World Environmental Humidity. ACS Nano, 2011, 5, 6743-6753.	7.3	97
244	A Stimulusâ€Responsive Zinc–Iodine Battery with Smart Overcharge Selfâ€Protection Function. Advanced Materials, 2020, 32, e2000287.	11.1	97
245	Controllable Columnar Organization of Positively Charged Polycyclic Aromatic Hydrocarbons by Choice of Counterions. Journal of the American Chemical Society, 2009, 131, 9620-9621.	6.6	96
246	A Highâ€Voltage, Dendriteâ€Free, and Durable Zn–Graphite Battery. Advanced Materials, 2020, 32, e1905681.	11.1	96
247	Collective All arbon Magnetism in Triangulene Dimers**. Angewandte Chemie - International Edition, 2020, 59, 12041-12047.	7.2	96
248	Vinylene-Linked Two-Dimensional Covalent Organic Frameworks: Synthesis and Functions. Accounts of Materials Research, 2021, 2, 252-265.	5.9	96
249	Benzo[1,2-b:4,5-b′]bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. Chemical Communications, 2008, , 1548.	2.2	95
250	Titania Nanosheetâ€Mediated Construction of a Twoâ€Dimensional Titania/Cadmium Sulfide Heterostructure for High Hydrogen Evolution Activity. Advanced Materials, 2014, 26, 734-738.	11.1	95
251	Topochemical Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphides Using Phosphorene Templates. Angewandte Chemie - International Edition, 2020, 59, 465-470.	7.2	94
252	Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS Nano, 2022, 16, 1759-1780.	7.3	94

#	Article	IF	Citations
253	Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23799-23808.	5.2	93
254	Patterning of Conjugated Polymers for Organic Optoelectronic Devices. Small, 2011, 7, 1338-1360.	5.2	92
255	Graphene encapsulated hollow TiO2 nanospheres: efficient synthesis and enhanced photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 3752.	5. 2	92
256	Synthesis of Nitrogenâ€Doped ZigZagâ€Edge Peripheries: Dibenzoâ€9 <i>a</i> aaacaphenalene as Repeating Unit. Angewandte Chemie - International Edition, 2014, 53, 10520-10524.	7.2	92
257	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Nano Letters, 2017, 17, 2197-2203.	4.5	92
258	Carbon Nanotube/Hexaâ€ <i>peri</i> â€hexabenzocoronene Bilayers for Discrimination Between Nonpolar Volatile Organic Compounds of Cancer and Humid Atmospheres. Advanced Materials, 2010, 22, 4317-4320.	11.1	91
259	A C216-Nanographene Molecule with Defined Cavity as Extended Coronoid. Journal of the American Chemical Society, 2016, 138, 4322-4325.	6.6	90
260	A Stable Saddleâ€Shaped Polycyclic Hydrocarbon with an Openâ€Shell Singlet Ground State. Angewandte Chemie - International Edition, 2017, 56, 3280-3284.	7.2	90
261	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	11.1	90
262	Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nature Catalysis, 2021, 4, 557-564.	16.1	90
263	Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for Highâ€Performance Lithium Storage. ChemSusChem, 2013, 6, 1510-1515.	3.6	89
264	Twoâ€Dimensional Mesoscaleâ€Ordered Conducting Polymers. Angewandte Chemie - International Edition, 2016, 55, 12516-12521.	7.2	89
265	Persulfurated Coronene: A New Generation of "Sulflower― Journal of the American Chemical Society, 2017, 139, 2168-2171.	6.6	89
266	Self-Assembly of Chiral Molecular Honeycomb Networks on Au(111). Journal of the American Chemical Society, 2008, 130, 8910-8912.	6.6	88
267	Hexathienocoronenes: Synthesis and Self-Organization. Journal of the American Chemical Society, 2012, 134, 17869-17872.	6.6	88
268	Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap $\langle i \rangle N \langle i \rangle = 9$ Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 3635-3638.	6.6	88
269	Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nature Communications, 2017, 8, 1948.	5.8	88
270	WS ₂ –Graphite Dual-Ion Batteries. Nano Letters, 2018, 18, 7155-7164.	4.5	88

#	Article	IF	Citations
271	Highly Boosted Reaction Kinetics in Carbon Dioxide Electroreduction by Surfaceâ€Introduced Electronegative Dopants. Advanced Functional Materials, 2021, 31, 2008146.	7.8	88
272	Polymerâ€Based Batteries—Flexible and Thin Energy Storage Systems. Advanced Materials, 2020, 32, e2000587.	11.1	87
273	Grapheneâ€Based Optically Transparent Electrodes for Spectroelectrochemistry in the UV–Vis Region. Small, 2010, 6, 184-189.	5.2	86
274	Electrochemicalâ€Reductionâ€Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithiumâ€Storage Performance. Chemistry - A European Journal, 2013, 19, 10895-10902.	1.7	86
275	Benzanelliertes Doppelâ€[7]Carbohelicen: Synthese, Struktur und physikochemische Eigenschaften. Angewandte Chemie, 2017, 129, 3423-3427.	1.6	86
276	Synthesis of Vinyleneâ€Linked Twoâ€Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction. Angewandte Chemie - International Edition, 2020, 59, 23620-23625.	7.2	86
277	Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets. Chemical Communications, 2010, 46, 8279.	2.2	85
278	Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale, 2014, 6, 6301-6314.	2.8	85
279	Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Physical Review B, 2015, 91, .	1.1	85
280	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
281	Metal-Free Phenanthrenequinone Cyclotrimer as an Effective Heterogeneous Catalyst. Journal of the American Chemical Society, 2009, 131, 11296-11297.	6.6	84
282	Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 2286-2292.	5. 2	84
283	Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Journal of the American Chemical Society, 2016, 138, 10136-10139.	6.6	83
284	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
285	Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes. Journal of Materials Chemistry A, 2016, 4, 314-320.	5.2	83
286	Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Applied Physics Letters, 2014, 105, .	1.5	82
287	Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Materials, 2015, 1, 119-126.	9.5	82
288	Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chemical Science, 2020, 11, 7665-7671.	3.7	82

#	Article	IF	Citations
289	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	15.6	82
290	Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale, 2017, 9, 8871-8878.	2.8	81
291	From Helical to Staggered Stacking of Zigzag Nanographenes. Journal of the American Chemical Society, 2007, 129, 14116-14117.	6.6	80
292	Synthesis, Helical Organization, and Fibrous Formation of C3 Symmetric Methoxy-Substituted Discotic Hexa-peri-hexabenzocoronene. Chemistry of Materials, 2008, 20, 2872-2874.	3.2	80
293	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10, 5435-5488.	4.6	80
294	Supramolecular Organization and Photovoltaics of Triangleâ€shaped Discotic Graphenes with Swallowâ€tailed Alkyl Substituents. Advanced Materials, 2008, 20, 2684-2689.	11.1	79
295	Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy and Environmental Science, 2018, 11, 1717-1722.	15.6	79
296	Local Spinâ€State Tuning of Iron Singleâ€Atom Electrocatalyst by Sâ€Coordinated Doping for Kineticsâ€Boosted Ammonia Synthesis. Advanced Materials, 2022, 34, e2202240.	11.1	79
297	Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7767-7772.	5.2	78
298	Cationic Nitrogenâ€Doped Helical Nanographenes. Angewandte Chemie - International Edition, 2017, 56, 15876-15881.	7.2	77
299	Efficient Coupling of Nanoparticles to Electrochemically Exfoliated Graphene. Journal of the American Chemical Society, 2015, 137, 5576-5581.	6.6	7 5
300	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	2.4	75
301	Ultrafast Electrochemical Synthesis of Defectâ€Free In ₂ Se ₃ Flakes for Largeâ€Area Optoelectronics. Advanced Materials, 2020, 32, e1907244.	11.1	75
302	Dual-Redox-Sites Enable Two-Dimensional Conjugated Metalâ€"Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Journal of the American Chemical Society, 2021, 143, 10168-10176.	6.6	75
303	Oneâ€Pot Synthesis of Highly Magnetically Sensitive Nanochains Coated with a Highly Cross‣inked and Biocompatible Polymer. Angewandte Chemie - International Edition, 2010, 49, 8476-8479.	7.2	73
304	Twoâ€Dimensional Nanostructures from Positively Charged Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2011, 50, 2791-2794.	7.2	73
305	Patterning Graphene Surfaces with Ironâ€Oxideâ€Embedded Mesoporous Polypyrrole and Derived Nâ€Doped Carbon of Tunable Pore Size. Small, 2018, 14, 1702755.	5.2	73
306	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	3.7	73

#	Article	IF	Citations
307	Synthesis of Dibenzo [<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	7.2	72
308	Resolving Atomic Connectivity in Graphene Nanostructure Junctions. Nano Letters, 2015, 15, 5185-5190.	4.5	71
309	Polycyclic aromatic azomethine ylides: a unique entry to extended polycyclic heteroaromatics. Chemical Science, 2015, 6, 436-441.	3.7	71
310	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performan Cathode for Lithiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 859-863.	ce 1.6	71
311	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 9101-9112.	6.6	71
312	Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 2018, 127, 77-84.	5.4	70
313	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	5.4	70
314	Amphiphilic Polymer Promoted Assembly of Macroporous Graphene/SnO ₂ Frameworks with Tunable Porosity for Highâ€Performance Lithium Storage. Small, 2014, 10, 2226-2232.	5.2	69
315	Electronâ€√ransporting Bis(heterotetracenes) with Tunable Helical Packing. Angewandte Chemie - International Edition, 2018, 57, 10933-10937.	7.2	69
316	Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nature Communications, 2017, 8, 14767.	5.8	68
317	On-Surface Cyclization of <i>ortho</i> -Dihalotetracenes to Four- and Six-Membered Rings. Journal of the American Chemical Society, 2017, 139, 17617-17623.	6.6	68
318	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	6.6	68
319	Twoâ€Dimensional Nanocomposites Based on Chemically Modified Graphene. Chemistry - A European Journal, 2011, 17, 10804-10812.	1.7	67
320	Boron-Ï€-nitrogen-based conjugated porous polymers with multi-functions. Journal of Materials Chemistry A, 2013, 1, 13878.	5.2	67
321	Nitrogen-doped carbon-encapsulated SnO ₂ –SnS/graphene sheets with improved anodic performance in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 24148-24154.	5.2	67
322	Beyond Activated Carbon: Graphiteâ€Cathodeâ€Derived Liâ€Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 2019, 31, e1807712.	11.1	67
323	Fused Dibenzo[<i>a</i> , <i>m</i>]rubicene: A New Bowl-Shaped Subunit of C ₇₀ Containing Two Pentagons. Journal of the American Chemical Society, 2016, 138, 8364-8367.	6.6	66
324	Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen reduction catalysis. Journal of Materials Chemistry A, 2018, 6, 10354-10360.	5.2	66

#	Article	IF	CITATIONS
325	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
326	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	7.8	65
327	Lateral Fusion of Chemical Vapor Deposited $\langle i \rangle N \langle j \rangle = 5$ Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 9483-9486.	6.6	65
328	Electrochemically Exfoliated Highâ€Quality 2Hâ€MoS ₂ for Multiflake Thin Film Flexible Biosensors. Small, 2019, 15, e1901265.	5.2	65
329	Conjugated Ladder-Type Heteroacenes Bearing Pyrrole and Thiophene Ring Units: Facile Synthesis and Characterization. Journal of Organic Chemistry, 2008, 73, 9207-9213.	1.7	64
330	Discotic materials for organic solar cells: Effects of chemical structure on assembly and performance. Solar Energy Materials and Solar Cells, 2010, 94, 560-567.	3.0	64
331	Scanning Tunneling Microscopy-Induced Reversible Phase Transformation in the Two-Dimensional Crystal of a Positively Charged Discotic Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2011, 133, 5686-5688.	6.6	64
332	Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2016, 8, 8650-8657.	2.8	64
333	Dualâ€Graphene Rechargeable Sodium Battery. Small, 2017, 13, 1702449.	5.2	64
334	Temperature-Dependent Multidimensional Self-Assembly of Polyphenylene-Based "Rod–Coil―Graft Polymers. Journal of the American Chemical Society, 2015, 137, 11602-11605.	6.6	63
335	Synthesis and characterization of [7]triangulene. Nanoscale, 2021, 13, 1624-1628.	2.8	62
336	Defective Nanographenes Containing Seven-Five-Seven (7–5–7)-Membered Rings. Journal of the American Chemical Society, 2021, 143, 2353-2360.	6.6	62
337	A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity. Chemical Communications, 2009, , 809-811.	2.2	61
338	A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage. Nanoscale, 2014, 6, 14679-14685.	2.8	61
339	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. Journal of the American Chemical Society, 2017, 139, 4671-4674.	6.6	61
340	On-Surface Synthesis of a Nonplanar Porous Nanographene. Journal of the American Chemical Society, 2019, 141, 7726-7730.	6.6	61
341	Onâ€Surface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie - International Edition, 2020, 59, 8873-8879.	7.2	61
342	Controlling the Columnar Orientation of <i>C</i> ₃ â€Symmetric "Superbenzenes―through Alternating Polar/Apolar Substitutents. Angewandte Chemie - International Edition, 2008, 47, 1703-1706.	7.2	60

#	Article	IF	CITATIONS
343	Preparation of Microporous Melamineâ€based Polymer Networks in an Anhydrous Highâ€Temperature Miniemulsion. Macromolecular Rapid Communications, 2011, 32, 1798-1803.	2.0	60
344	Cobaltâ€Based Metal–Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Znâ€Air Batteries. Chemistry - A European Journal, 2018, 24, 18413-18418.	1.7	60
345	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€Supercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	7.8	60
346	The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chemical Communications, 2018, 54, 5307-5310.	2.2	59
347	Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni–Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 8165-8170.	5.5	59
348	Dirac Nodal Arc Semimetal PtSn ₄ : An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 13107-13112.	7.2	59
349	Direct Observation of the Ionization Step in Solvolysis Reactions:  Electrophilicity versus Electrofugality of Carbocations. Journal of the American Chemical Society, 2008, 130, 3012-3022.	6.6	58
350	Nitrogen-enriched hierarchically porous carbon materials fabricated by graphene aerogel templated Schiff-base chemistry for high performance electrochemical capacitors. Polymer Chemistry, 2015, 6, 1088-1095.	1.9	58
351	Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer "kippah vesicles―for high performance supercapacitors. Polymer Chemistry, 2016, 7, 2092-2098.	1.9	58
352	High Power Inâ€Plane Microâ€Supercapacitors Based on Mesoporous Polyaniline Patterned Graphene. Small, 2017, 13, 1603388.	5.2	58
353	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	1.6	58
354	On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. Journal of the American Chemical Society, 2020, 142, 13565-13572.	6.6	58
355	Thiazolothiazole-linked porous organic polymers. Chemical Communications, 2014, 50, 15055-15058.	2.2	57
356	Angular BN-Heteroacenes with <i>syn</i> -Structure-Induced Promising Properties as Host Materials of Blue Organic Light-Emitting Diodes. Organic Letters, 2016, 18, 3618-3621.	2.4	57
357	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	7.3	57
358	A Dualâ€Stimuliâ€Responsive Sodiumâ€Bromine Battery with Ultrahigh Energy Density. Advanced Materials, 2018, 30, e1800028.	11.1	56
359	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	7.1	56
360	Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sensors and Actuators B: Chemical, 2020, 320, 128363.	4.0	56

#	Article	IF	Citations
361	Interfacial Covalent Bonds Regulated Electronâ€Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions. Advanced Materials, 2021, 33, e2008752.	11.1	56
362	Extrinsic Corrugationâ€Assisted Mechanical Exfoliation of Monolayer Graphene. Advanced Materials, 2010, 22, 5374-5377.	11.1	55
363	Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chemical Communications, 2012, 48, 2119.	2.2	55
364	Ï€-Extended and Curved Antiaromatic Polycyclic Hydrocarbons. Journal of the American Chemical Society, 2017, 139, 7513-7521.	6.6	55
365	Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. Advanced Functional Materials, 2020, 30, 2003000.	7.8	55
366	Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO ₂ into formate. Chemical Science, 2020, 11, 3952-3958.	3.7	55
367	2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5, 2057-2064.	1.9	54
368	Solution-Processable High-Quality Graphene for Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25412-25417.	4.0	54
369	In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 2019, 59, 207-215.	8.2	54
370	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.	6.4	54
371	Electrodeposited Manganese Oxide on Nickel Foam–Supported Carbon Nanotubes for Electrode of Supercapacitors. Electrochemical and Solid-State Letters, 2011, 14, A93.	2.2	53
372	Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage. Carbon, 2015, 81, 203-209.	5.4	53
373	Poly(1,4â€Diethynylbenzene) Gradient Homojunction with Enhanced Charge Carrier Separation for Photoelectrochemical Water Reduction. Advanced Materials, 2019, 31, e1900961.	11.1	53
374	Metal–Nitrogen Doping of Mesoporous Carbon/Graphene Nanosheets by Selfâ€Templating for Oxygen Reduction Electrocatalysts. ChemSusChem, 2014, 7, 3002-3006.	3.6	52
375	Adding Four Extra K-Regions to Hexa- <i>peri</i> hexabenzocoronene. Journal of the American Chemical Society, 2016, 138, 4726-4729.	6.6	52
376	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie - International Edition, 2018, 57, 3366-3371.	7.2	52
377	Redoxâ€Active Metaphosphateâ€Like Terminals Enable Highâ€Capacity MXene Anodes for Ultrafast Naâ€lon Storage. Advanced Materials, 2022, 34, e2108682.	11.1	52
378	Temperatureâ€Enhanced Solvent Vapor Annealing of a <i>C</i> ₃ Symmetric Hexaâ€ <i>peri</i> àâ€Hexabenzocoronene: Controlling the Selfâ€Assembly from Nano―to Macroscale. Small, 2009, 5, 112-119.	5.2	51

#	Article	IF	Citations
379	Fabrication of Fully Fluorinated Graphene Nanosheets Towards Highâ€Performance Lithium Storage. Advanced Materials Interfaces, 2014, 1, 1300149.	1.9	51
380	Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants. ACS Nano, 2015, 9, $1360-1366$.	7.3	51
381	Polarityâ€Switchable Symmetric Graphite Batteries with High Energy and High Power Densities. Advanced Materials, 2018, 30, e1802949.	11.1	51
382	Arrays of Aligned Supramolecular Wires by Macroscopic Orientation of Columnar Discotic Mesophases. ACS Nano, 2012, 6, 9359-9365.	7.3	50
383	Field Effect Transistors Based on Polycyclic Aromatic Hydrocarbons for the Detection and Classification of Volatile Organic Compounds. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3431-3440.	4.0	50
384	Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors. Nano Energy, 2019, 65, 103987.	8.2	50
385	A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. Journal of the American Chemical Society, 2020, 142, 18293-18298.	6.6	50
386	Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzackâ€Rädern. Angewandte Chemie, 2020, 132, 23591-23607.	1.6	50
387	Perylene Sensitization of Fullerenes for Improved Performance in Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 861-869.	10.2	49
388	Cobaloxime anchored MoS ₂ nanosheets as electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 138-144.	5.2	49
389	Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion. Nature Communications, 2022, 13, .	5.8	49
390	Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 2015, 12, 287-295.	8.2	48
391	Constructing Hierarchically Hollow Core–Shell MnO ₂ /C Hybrid Spheres for Highâ€Performance Lithium Storage. Small, 2016, 12, 3914-3919.	5. 2	48
392	Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies. Journal of the American Chemical Society, 2018, 140, 10416-10420.	6.6	48
393	Luminescent sp ² -Carbon-Linked 2D Conjugated Polymers with High Photostability. Chemistry of Materials, 2020, 32, 7985-7991.	3.2	48
394	Hierarchical Selfâ€Assembly of Edgeâ€On Nanocolumnar Superstructures of Large Disc‣ike Molecules. Advanced Materials, 2008, 20, 3854-3858.	11.1	47
395	A dual-boron-cored luminogen capable of sensing and imaging. Chemical Communications, 2015, 51, 5298-5301.	2.2	47
396	A Delamination Strategy for Thinly Layered Defectâ€Free Highâ€Mobility Black Phosphorus Flakes. Angewandte Chemie, 2018, 130, 4767-4771.	1.6	47

#	Article	IF	CITATIONS
397	Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties. Angewandte Chemie, 2020, 132, 5686-5691.	1.6	47
398	Designer spin order in diradical nanographenes. Nature Communications, 2020, 11, 6076.	5 . 8	47
399	Engineering of Magnetic Coupling in Nanographene. Physical Review Letters, 2020, 124, 147206.	2.9	47
400	Graphene aerogel supported Fe $<$ sub $>$ 6 $<$ form) $<$ sub $>$ 60 $<$ form) $<$ sub $>$ 60 $<$ form) $<$	5.2	46
401	Chemical Approaches to 2D Materials. Advanced Materials, 2016, 28, 6027-6029.	11.1	46
402	Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS Nano, 2017, 11, 2509-2520.	7.3	46
403	Growth of 2D Mesoporous Polyaniline with Controlled Pore Structures on Ultrathin MoS ₂ Nanosheets by Block Copolymer Self-Assembly in Solution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43975-43982.	4.0	46
404	Polyanilineâ€Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie, 2013, 125, 12327-12331.	1.6	45
405	Photoinduced C–C Reactions on Insulators toward Photolithography of Graphene Nanoarchitectures. Journal of the American Chemical Society, 2014, 136, 4651-4658.	6.6	45
406	High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes. Journal of Physical Chemistry C, 2017, 121, 10620-10625.	1.5	45
407	NBN-embedded Polycyclic Aromatic Hydrocarbons Containing Pentagonal and Heptagonal Rings. Organic Letters, 2019, 21, 1354-1358.	2.4	45
408	Synthesis and Properties of <i>C</i> _{<i>2h</i>} -Symmetric BN-Heteroacenes Tailored through Aromatic Central Cores. Journal of Organic Chemistry, 2015, 80, 10127-10133.	1.7	44
409	Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Research, 2017, 10, 3377-3384.	5.8	44
410	Two-Dimensional Sandwich-Structured Mesoporous Mo ₂ C/Carbon/Graphene Nanohybrids for Efficient Hydrogen Production Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 40800-40807.	4.0	44
411	Synthetic Engineering of Graphene Nanoribbons with Excellent Liquid-Phase Processability. Trends in Chemistry, 2019, 1, 549-558.	4.4	44
412	Bottomâ€Up Synthesis of Necklaceâ€Like Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	1.7	43
413	Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications. Polymer Chemistry, 2015, 6, 7171-7178.	1.9	43
414	Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chemical Neuroscience, 2017, 8, 2402-2413.	1.7	43

#	Article	IF	Citations
415	Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 6970-6974.	1.6	43
416	Tetrabenzo[a,f,j,o]perylene: A Polycyclic Aromatic Hydrocarbon With An Openâ€Shell Singlet Biradical Ground State. Angewandte Chemie, 2015, 127, 12619-12623.	1.6	42
417	Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2017, 5, 16732-16739.	5.2	42
418	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie - International Edition, 2019, 58, 10368-10374.	7.2	42
419	Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Materials, 2020, 27, 396-404.	9.5	42
420	Spongelike Structures of Hexa- <i>peri</i> hexabenzocoronene Derivatives Enhance the Sensitivity of Chemiresistive Carbon Nanotubes to Nonpolar Volatile Organic Compounds of Cancer. Langmuir, 2009, 25, 5411-5416.	1.6	41
421	Sensor Arrays Based on Polycyclic Aromatic Hydrocarbons: Chemiresistors versus Quartz-Crystal Microbalance. ACS Applied Materials & Interfaces, 2013, 5, 11641-11653.	4.0	41
422	Electrochemically exfoliated graphene/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2016, 194, 110-115.	2.6	41
423	Surfaceâ€Modified Phthalocyanineâ€Based Twoâ€Dimensional Conjugated Metal–Organic Framework Films for Polarityâ€Selective Chemiresistive Sensing. Angewandte Chemie - International Edition, 2021, 60, 18666-18672.	7.2	41
424	Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014, 6, 106-121.	2.8	40
425	Triple Boron-Cored Chromophores Bearing Discotic 5,11,17-Triazatrinaphthylene-Based Ligands. Organic Letters, 2016, 18, 1398-1401.	2.4	40
426	A Stable Saddleâ€Shaped Polycyclic Hydrocarbon with an Openâ€Shell Singlet Ground State. Angewandte Chemie, 2017, 129, 3328-3332.	1.6	40
427	Fully sp ² â€Carbonâ€Linked Crystalline Twoâ€Dimensional Conjugated Polymers: Insight into 2D Poly(phenylenecyanovinylene) Formation and its Optoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6562-6568.	1.7	40
428	Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(<i>>para</i> -2,9-dibenzo[<i>>bc</i> , <i>kl</i>]coronenylene) Polymer Chains. Journal of the American Chemical Society, 2019, 141, 2843-2846.	6.6	40
429	Band transport by large Fröhlich polarons in MXenes. Nature Physics, 2022, 18, 544-550.	6.5	40
430	Exploration of Thiazolo[5,4â€∢i>d⟨/i>]thiazole Linkages in Conjugated Porous Organic Polymers for Chemoselective Molecular Sieving. Chemistry - A European Journal, 2018, 24, 10868-10875.	1.7	39
431	Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Science Advances, 2020, 6, eabb5976.	4.7	39
432	Multi-Dimensional Self-Assembly of a Dual-Responsive ABC Miktoarm Star Terpolymer. ACS Macro Letters, 2017, 6, 426-430.	2.3	38

#	Article	IF	Citations
433	Onâ€Surface Synthesis and Characterization of Aceneâ€Based Nanoribbons Incorporating Fourâ€Membered Rings. Chemistry - A European Journal, 2019, 25, 12074-12082.	1.7	38
434	Columnar Selfâ€Assembly in Electronâ€Deficient Heterotriangulenes. Chemistry - A European Journal, 2013, 19, 8117-8128.	1.7	37
435	Squeezing, Then Stacking: From Breathing Pores to Threeâ€Dimensional Ionic Selfâ€Assembly under Electrochemical Control. Angewandte Chemie - International Edition, 2014, 53, 12951-12954.	7.2	36
436	Sulfurâ€Annulated Hexaâ€∢i>perià€hexabenzocoronene Decorated with Phenylthio Groups at the Periphery. Angewandte Chemie - International Edition, 2015, 54, 2927-2931.	7.2	36
437	Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A, 2015, 3, 23352-23359.	5.2	36
438	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 2018, 30, e1801600.	11.1	36
439	Twoâ€Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. Angewandte Chemie, 2020, 132, 8295-8301.	1.6	36
440	Making large single crystals of 2D MOFs. Nature Materials, 2021, 20, 122-123.	13.3	36
441	Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal–Organic Framework Films toward Directional Charge Transport. Journal of the American Chemical Society, 2021, 143, 13624-13632.	6.6	36
442	Wave-shaped polycyclic hydrocarbons with controlled aromaticity. Chemical Science, 2019, 10, 4025-4031.	3.7	35
443	Hierarchically porous carbons as supports for fuel cell electrocatalysts with atomically dispersed Fe–N _x moieties. Chemical Science, 2019, 10, 8236-8240.	3.7	34
444	Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Zâ€Scheme Heterojunction for Photoelectrochemical Water Reduction. Advanced Materials, 2020, 32, e2002486.	11.1	34
445	On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction., 2022, 1, 69-76.		34
446	Synthesis and self-assembly of dibenzo[jk,mn]naphtho[2,1,8-fgh]thebenidinium derivates. Tetrahedron, 2008, 64, 11379-11386.	1.0	33
447	Subliming the Unsublimable: How to Deposit Nanographenes. Angewandte Chemie - International Edition, 2009, 48, 4602-4604.	7.2	33
448	Molecular Triangles: Synthesis, Selfâ€Assembly, and Blue Emission of Cycloâ€7,10â€trisâ€triphenylenyl Macrocycles. Chemistry - an Asian Journal, 2011, 6, 3001-3010.	1.7	32
449	Electrical Characteristics of Fieldâ€Effect Transistors based on Chemically Synthesized Graphene Nanoribbons. Advanced Electronic Materials, 2015, 1, 1400010.	2.6	32
450	Viologenâ€Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solarâ€Powered Smart Window. Advanced Materials, 2022, 34, e2106073.	11.1	32

#	Article	IF	Citations
451	Softâ€Template Construction of 3D Macroporous Polypyrrole Scaffolds. Small, 2017, 13, 1604099.	5.2	31
452	An Anodeâ€Free Zn–Graphite Battery. Advanced Materials, 2022, 34, e2201957.	11.1	31
453	Fluorenyl Hexaâ€∢i>periàâ€hexabenzocoroneneâ€Dendritic Oligothiophene Hybrid Materials: Synthesis, Photophysical Properties, Selfâ€Association Behaviour and Device Performance. Chemistry - A European Journal, 2011, 17, 5549-5560.	1.7	30
454	2D Heterostructures Derived from MoS ₂ â€Templated, Cobaltâ€Containing Conjugated Microporous Polymer Sandwiches for the Oxygen Reduction Reaction and Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 709-715.	1.7	30
455	Tunable Selfâ€Assembly of Diblock Copolymers into Colloidal Particles with Triply Periodic Minimal Surfaces. Angewandte Chemie, 2017, 129, 7241-7246.	1.6	30
456	A Nonaqueous Naâ€lon Hybrid Microâ€Supercapacitor with Wide Potential Window and Ultrahigh Areal Energy Density. Batteries and Supercaps, 2019, 2, 918-923.	2.4	30
457	Wet-Chemical Assembly of 2D Nanomaterials into Lightweight, Microtube-Shaped, and Macroscopic 3D Networks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44652-44663.	4.0	30
458	One-pot approach to Pd-loaded porous polymers with properties tunable by the oxidation state of the phosphorus core. Polymer Chemistry, 2015, 6, 6351-6357.	1.9	29
459	Anionic porous polymers with tunable structures and catalytic properties. Journal of Materials Chemistry A, 2016, 4, 15162-15168.	5.2	29
460	A Shape-Persistent Polyphenylene Spoked Wheel. Journal of the American Chemical Society, 2016, 138, 15539-15542.	6.6	29
461	Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9797-9805.	4.0	29
462	Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration. Nano Letters, 2021, 21, 3690-3697.	4.5	29
463	NBNâ€Doped <i>Bis</i> à€Tetracene and <i>Peri</i> â€Tetracene: Synthesis and Characterization. Angewandte Chemie - International Edition, 2021, 60, 26115-26121.	7.2	29
464	An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
465	Boronâ€Doped, Carbonâ€Coated SnO ₂ /Graphene Nanosheets for Enhanced Lithium Storage. Chemistry - A European Journal, 2015, 21, 5617-5622.	1.7	28
466	Hierarchical TiO ₂ –SnO ₂ –graphene aerogels for enhanced lithium storage. Physical Chemistry Chemical Physics, 2015, 17, 1580-1584.	1.3	28
467	Electron beam controlled covalent attachment of small organic molecules to graphene. Nanoscale, 2016, 8, 2711-2719.	2.8	28
468	Dirac Nodal Arc Semimetal PtSn ₄ : An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution. Angewandte Chemie, 2019, 131, 13241-13246.	1.6	28

#	Article	IF	Citations
469	Thiopheneâ€Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Coâ€Catalystâ€Free Photoelectrochemical Water Reduction in Alkaline Medium. Angewandte Chemie - International Edition, 2021, 60, 18876-18881.	7.2	28
470	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
471	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28
472	Benzoâ€Extended Cyclohepta[<i>def</i>]fluorene Derivatives with Very Lowâ€Lying Triplet States. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
473	Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Journal of the American Chemical Society, 2022, 144, 228-235.	6.6	28
474	Microribbon Field-Effect Transistors Based on Dithieno[2,3-d;2,3′-d′]benzo[1,2-b;4,5-b′]dithiophene Processed by Solvent Vapor Diffusion. Chemistry of Materials, 2011, 23, 4960-4964.	3. 2	27
475	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	1.7	27
476	Siliconâ€Compatible Carbonâ€Based Microâ€Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 6136-6138.	7.2	27
477	Kationische stickstoffdotierte helikale Nanographene. Angewandte Chemie, 2017, 129, 16092-16097.	1.6	27
478	Effect of Side Chains on the Low-Dimensional Self-Assembly of Polyphenylene-Based "Rod–Coil―Graft Copolymers in Solution. Macromolecules, 2018, 51, 161-172.	2.2	27
479	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie, 2019, 131, 10476-10482.	1.6	27
480	Oneâ€Pot Synthesis of Boronâ€Doped Polycyclic Aromatic Hydrocarbons via 1,4â€Boron Migration. Angewandte Chemie - International Edition, 2021, 60, 2833-2838.	7.2	27
481	Persistent <i>peri</i> àâ€Heptacene: Synthesis and In Situ Characterization. Angewandte Chemie - International Edition, 2021, 60, 13853-13858.	7.2	27
482	Efficient synthesis and physical properties of novel H-shaped 2,3,7,8-tetraazaanthracene-based conjugated molecules. Chemical Communications, 2012, 48, 4166.	2.2	26
483	Polycyclic Aromatic Hydrocarbon for the Detection of Nonpolar Analytes under Counteracting Humidity Conditions. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4960-4965.	4.0	26
484	High-index faceted binary-metal selenide nanosheet arrays as efficient 3D electrodes for alkaline hydrogen evolution. Nanoscale, 2019, 11, 17571-17578.	2.8	26
485	Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy, 2019, 60, 8-16.	8.2	26
486	Advanced design of cathodes and interlayers for highâ€performance lithiumâ€selenium batteries. SusMat, 2021, 1, 393-412.	7.8	26

#	Article	IF	CITATIONS
487	Selfâ€Assembly and Microstructural Control of a Hexaâ€ <i>peri</i> å€hexabenzocoronene–Perylene Diimide Dyad by Solvent Vapor Diffusion. Small, 2011, 7, 2841-2846.	5.2	25
488	Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts. Physical Chemistry Chemical Physics, 2015, 17, 21988-21996.	1.3	25
489	Electronic Doping of Metalâ€Organic Frameworks for Highâ€Performance Flexible Microâ€Supercapacitors. Small Structures, 2021, 2, 2000095.	6.9	25
490	Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. Journal of Energy Chemistry, 2021, 63, 514-520.	7.1	25
491	Columnar liquid crystalline bis-N-annulated quaterrylenes. Chemical Communications, 2011, 47, 10088.	2.2	24
492	Coplanar Asymmetrical Reduced Graphene Oxide–Titanium Electrodes for Polymer Photodetectors. Advanced Materials, 2012, 24, 1566-1570.	11.1	24
493	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 352-357.	1.0	24
494	Topological control of 3,4-connected frameworks based on the Cu ₂ -paddle-wheel node: tbo pto, and why?. CrystEngComm, 2016, 18, 8164-8171.	1.3	24
495	Building Pentagons into Graphenic Structures by On-Surface Polymerization and Aromatic Cyclodehydrogenation of Phenyl-Substituted Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2016, 120, 17588-17593.	1.5	24
496	Electronâ€Transporting Bis(heterotetracenes) with Tunable Helical Packing. Angewandte Chemie, 2018, 130, 11099-11103.	1.6	24
497	Zeolitic Imidazolate Frameworkâ€Derived Coreâ€Shellâ€Structured CoS 2 /CoS 2 â€Nâ€C Supported on Electrochemically Exfoliated Graphene Foil for Efficient Oxygen Evolution. Batteries and Supercaps, 2019, 2, 348-354.	2.4	24
498	Liquid Crystal Addressing by Graphene Electrodes Made from Graphene Oxide. Japanese Journal of Applied Physics, 2010, 49, 100206.	0.8	23
499	Mapping the Excited States of Single Hexa- <i>peri</i> benzocoronene Oligomers. ACS Nano, 2012, 6, 3230-3235.	7.3	23
500	Discotic hexa-peri-hexabenzocoronenes with strong dipole: synthesis, self-assembly and dynamic studies. Chemical Communications, 2012, 48, 702-704.	2.2	23
501	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6972-6977.	1.6	23
502	Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves. ACS Nano, 2016, 10, 6474-6483.	7.3	23
503	Polycyclic heteroaromatic hydrocarbons containing a benzoisoindole core. Organic Chemistry Frontiers, 2017, 4, 847-852.	2.3	23
504	Graphdiyne Electrocatalyst. Joule, 2018, 2, 1396-1398.	11.7	23

#	Article	IF	CITATIONS
505	Makroskopische kristalline 2Dâ€Polymere. Angewandte Chemie, 2018, 130, 13942-13959.	1.6	23
506	On-surface synthesis of nitrogen-doped nanographenes with $5\hat{a} \in "7$ membered rings. Chemical Communications, 2019, 55, 4731-4734.	2.2	23
507	Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2]Âcycloadditions. Nature Communications, 2020, 11, 1490.	5.8	23
508	Onâ€Surface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€Step Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie - International Edition, 2020, 59, 13281-13287.	7.2	23
509	Collective Allâ€Carbon Magnetism in Triangulene Dimers**. Angewandte Chemie, 2020, 132, 12139-12145.	1.6	23
510	Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. CheM, 2021, 7, 2758-2770.	5.8	23
511	Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Optoâ€)electronics. Small Structures, 2022, 3, .	6.9	23
512	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinyleneâ€Linked 2D Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
513	Unusual Symmetry Effect on Hexa-peri-hexabenzocoronene. Chemistry of Materials, 2008, 20, 1191-1193.	3.2	22
514	Efficient Approach to Electron-Deficient 1,2,7,8-Tetraazaperylene Derivatives. Organic Letters, 2014, 16, 4726-4729.	2.4	22
515	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie, 2017, 129, 3978-3982.	1.6	22
516	On-Surface Synthesis and Characterization of Super-nonazethrene. Journal of Physical Chemistry Letters, 2021, 12, 8314-8319.	2.1	22
517	Growth of Long, Highly Stable, and Densely Packed Worm-Like Nanocolumns of Hexa-peri-Hexabenzocoronenes via Chemisorption on $\operatorname{Au}(111)$. Journal of the American Chemical Society, 2009, 131, 1378-1379.	6.6	21
518	Dipâ€Coatingâ€Induced Fiber Growth of a Soluble Heterotriangulene. ChemPhysChem, 2011, 12, 1648-1651.	1.0	21
519	On-Surface Reaction between Tetracarbonitrile-Functionalized Molecules and Copper Atoms. Journal of Physical Chemistry C, 2014, 118, 27549-27553.	1.5	21
520	Twoâ€Dimensional Mesoscaleâ€Ordered Conducting Polymers. Angewandte Chemie, 2016, 128, 12704-12709.	1.6	21
521	A Lyotropic Liquidâ€Crystalâ€Based Assembly Avenue toward Highly Oriented Vanadium Pentoxide/Graphene Films for Flexible Energy Storage. Advanced Functional Materials, 2017, 27, 1606269.	7.8	21
522	Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 1588-1594.	5.2	21

#	Article	IF	Citations
523	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1, .	6.8	21
524	Scalable Manufacturing of MXene Films: Moving toward Industrialization. Matter, 2020, 3, 335-336.	5.0	21
525	On-surface synthesis of super-heptazethrene. Chemical Communications, 2020, 56, 7467-7470.	2.2	21
526	Synthesis and Selfâ€Assembly of Macrocyclic Mesogens Based on 1,10â€Phenanthroline. Chemistry - an Asian Journal, 2011, 6, 367-371.	1.7	20
527	Structural polymorphism in self-assembled networks of a triphenylene based macrocycle. Physical Chemistry Chemical Physics, 2013, 15, 12495.	1.3	20
528	Torands Revisited: Metal Sequestration and Selfâ€Assembly of Cycloâ€2,9â€trisâ€1,10â€phenanthroline Hexaaza Macrocycles. Chemistry - A European Journal, 2015, 21, 8426-8434.	1.7	20
529	Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Research, 2018, 11, 6190-6196.	5. 8	20
530	Helical Ullazineâ€Quinoxalineâ€Based Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2019, 25, 1345-1352.	1.7	20
531	Improved Hole Injection into Perovskite Lightâ€Emitting Diodes Using A Black Phosphorus Interlayer. Advanced Electronic Materials, 2019, 5, 1800687.	2.6	20
532	Onâ€Surface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie, 2020, 132, 8958-8964.	1.6	20
533	Giant thermal expansion of a two-dimensional supramolecular network triggered by alkyl chain motion. Communications Materials, 2020, 1, 8.	2.9	20
534	A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boronâ€Doped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 25695-25700.	7.2	20
535	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	2.8	19
536	Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene. Solid-State Electronics, 2018, 144, 90-94.	0.8	19
537	Potential-driven molecular tiling of a charged polycyclic aromatic compound. Chemical Communications, 2014, 50, 10376-10378.	2.2	18
538	Robust Two-Dimensional Electronic Properties in Three-Dimensional Microstructures of Rotationally Stacked Turbostratic Graphene. Physical Review Applied, 2017, 7, .	1.5	18
539	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie, 2017, 129, 6857-6861.	1.6	18
540	Polymer Brushes on Hexagonal Boron Nitride. Small, 2019, 15, 1805228.	5.2	18

#	Article	lF	CITATIONS
541	Competitive Metal Coordination of Hexaaminotriphenylene on Cu(111) by Intrinsic Copper Versus Extrinsic Nickel Adatoms. Chemistry - A European Journal, 2019, 25, 1975-1983.	1.7	18
542	Synthese von Vinylâ€verknüpften zweidimensionalen konjugierten Polymeren via Hornerâ€Wadsworthâ€Emmonsâ€Reaktion. Angewandte Chemie, 2020, 132, 23827-23832.	1.6	18
543	Highly Crystalline and Semiconducting Imineâ€Based Twoâ€Dimensional Polymers Enabled by Interfacial Synthesis. Angewandte Chemie, 2020, 132, 6084-6092.	1.6	18
544	A Twoâ€Dimensional Polyimideâ€Graphene Heterostructure with Ultraâ€fast Interlayer Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 13859-13864.	7.2	18
545	Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross‣ink Agents. Advanced Materials, 2016, 28, 5249-5254.	11.1	17
546	Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 11869-11878.	1.3	17
547	Supercapacitors: Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	17
548	Pyrene-Fused <i>s</i> -Indacene. Journal of Organic Chemistry, 2018, 83, 6633-6639.	1.7	17
549	Band Gap of Atomically Precise Graphene Nanoribbons as a Function of Ribbon Length and Termination. ChemPhysChem, 2019, 20, 2348-2353.	1.0	17
550	Onâ€surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure. Chemistry - an Asian Journal, 2020, 15, 3807-3811.	1.7	17
551	Tailoring Magnetic Features in Zigzagâ€Edged Nanographenes by Controlled Diels–Alder Reactions. Chemistry - A European Journal, 2020, 26, 7497-7503.	1.7	17
552	Oneâ∈Pot Synthesis of Boronâ∈Doped Polycyclic Aromatic Hydrocarbons via 1,4â∈Boron Migration. Angewandte Chemie, 2021, 133, 2869-2874.	1.6	17
553	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	5.2	17
554	Dipyrene-Fused Dicyclopenta[<i>>a</i> , <i>f</i>]naphthalenes. Journal of Organic Chemistry, 2020, 85, 215-223.	1.7	16
555	Force-Activated Isomerization of a Single Molecule. Journal of the American Chemical Society, 2020, 142, 10673-10680.	6.6	16
556	Ambientâ€Stable Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie, 2021, 133, 8771-8775.	1.6	16
557	Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility. Advanced Materials, 2021, 33, e2105694.	11.1	16
558	Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Science, 2022, 2, 2100080.	5.8	16

#	Article	IF	CITATIONS
559	Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes. Journal of the American Chemical Society, 2015, 137, 4453-4459.	6.6	15
560	Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for PhotoFuelCells. RSC Advances, 2015, 5, 27953-27963.	1.7	15
561	On-Surface Dehydro-Diels–Alder Reaction of Dibromo-bis(phenylethynyl)benzene. Journal of the American Chemical Society, 2020, 142, 1721-1725.	6.6	15
562	Onâ€Surface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€Step Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie, 2020, 132, 13383-13389.	1.6	15
563	Mass Transfer in Boronate Ester 2D COF Single Crystals. Small, 2021, 17, e2104392.	5.2	15
564	Exfoliation of Graphite into Graphene in Polar Solvents Mediated by Amphiphilic Hexaâ€∢i>peri⟨ i>â€hexabenzocoronene. Chemistry - an Asian Journal, 2014, 9, 3125-3129.	1.7	14
565	Geometric and Electronic Structures of Boron(III)â€Cored Dyes Tailored by Incorporation of Heteroatoms into Ligands. Chemistry - an Asian Journal, 2015, 10, 709-714.	1.7	14
566	Synthesis, Photophysical Characterization, and Selfâ€Assembly of Hexaâ€ <i>peri</i> i>à€hexabenzocoronene/Benzothiadiazole Donor–Acceptor Structure. ChemPlusChem, 2017, 82, 1030-1033.	1.3	14
567	Detachment Dynamics of Graphene Nanoribbons on Gold. ACS Nano, 2019, 13, 689-697.	7.3	14
568	Bioresponsive, Electroactive, and Inkjetâ€Printable Grapheneâ€Based Inks. Advanced Functional Materials, 2022, 32, 2105028.	7.8	14
569	Synthesis and Characterization of <i>peri</i> i>â€Heptacene on a Metallic Surface. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
570	Onâ€surface synthesis of porous graphene nanoribbons containing nonplanar [14]annulene pores. Journal of Polymer Science, 2022, 60, 1912-1917.	2.0	14
571	Construction of single-crystalline supramolecular networks of perchlorinated hexa- <i>peri</i> -hexabenzocoronene on Au(111). Journal of Chemical Physics, 2015, 142, 101911.	1.2	13
572	Sub-Nanometer Width Armchair Graphene Nanoribbon Energy Gap Atlas. Journal of Physical Chemistry Letters, 2015, 6, 3228-3235.	2.1	13
573	Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a "rod–coil―graft copolymer with a polyphenylene backbone. Polymer Chemistry, 2016, 7, 1234-1238.	1.9	13
574	Bottom-Up Synthesis of Nitrogen-Doped Polycyclic Aromatic Hydrocarbons. Synlett, 2020, 31, 211-222.	1.0	13
575	Sulfur-Doped Nanographenes Containing Multiple Subhelicenes. Organic Letters, 2021, 23, 2069-2073.	2.4	13
576	Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. Chinese Chemical Letters, 2022, 33, 3921-3924.	4.8	13

#	Article	IF	CITATIONS
577	Large-area bi-component processing of organic semiconductors by spray deposition and spin coating with orthogonal solvents. Applied Physics A: Materials Science and Processing, 2009, 95, 15-20.	1.1	12
578	Electrooptic Switching in Graphene-Based Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2011, 543, 187/[953]-193/[959].	0.4	12
579	Reversible Anionâ€Driven Switching of an Organic 2D Crystal at a Solid–Liquid Interface. Small, 2017, 13, 1702379.	5.2	12
580	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie, 2018, 130, 3424-3429.	1.6	12
581	Wetting Properties of Graphene Aerogels. Scientific Reports, 2020, 10, 1916.	1.6	12
582	Electrically powered repeatable air explosions using microtubular graphene assemblies. Materials Today, 2021, 48, 7-17.	8.3	12
583	Onâ€6urface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie - International Edition, 2021, 60, 25551-25556.	7.2	12
584	Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove–Armchair–Gulf Edge Structures. Advanced Science, 2022, 9, e2200708.	5.6	12
585	Ballistic Electron Microscopy of Nanographene Layers. Nano Letters, 2008, 8, 4259-4264.	4. 5	11
586	Ultraschnelle Schichtabl \tilde{A} ¶sung von Graphit zu qualitativ hochwertigem Graphen durch Nutzung von Wechselstrom. Angewandte Chemie, 2017, 129, 6770-6776.	1.6	11
587	Nanographenes and Graphene Nanoribbons with Zigzag-Edged Structures. Advances in Polymer Science, 2017, , 1-32.	0.4	11
588	Persistent <i>peri</i> i>â€Heptacene: Synthesis and In Situ Characterization. Angewandte Chemie, 2021, 133, 13972-13977.	1.6	11
589	Highâ€Performance Bifunctional Electrocatalysts of Palladium Decoration on Carbon Nanoarchitectures for Indirect Releasing of H ₂ Stored in Formate. Small Structures, 2021, 2, .	6.9	11
590	Exploring the Interaction between Graphene Derivatives and Metal Ions as a Key Step towards Graphene–Inorganic Nanohybrids. Chemistry - an Asian Journal, 2013, 8, 410-413.	1.7	10
591	Graphene flakes at the SiO2/organic-semiconductor interface for high-mobility field-effect transistors. Organic Electronics, 2015, 27, 221-226.	1.4	10
592	Ï€â€Conjugated Molecules: From Structure to Function. ChemPlusChem, 2019, 84, 1177-1178.	1.3	10
593	Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration. Chemical Science, 2020, 11, 12816-12821.	3.7	10
594	Sulfurâ€Annulated Hexaâ€∢i>periòâ€hexabenzocoronene Decorated with Phenylthio Groups at the Periphery. Angewandte Chemie, 2015, 127, 2970-2974.	1.6	9

#	Article	IF	Citations
595	S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12, 346-357.	2.3	9
596	Musselâ€Inspired Nitrogenâ€Doped Porous Carbon as Anode Materials for Sodiumâ€Ion Batteries. Energy Technology, 2019, 7, 1800763.	1.8	9
597	Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air–Water Interface. ACS Applied Materials & Interfaces, 2021, 13, 26411-26420.	4.0	9
598	Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 11/2012). Advanced Materials, 2012, 24, 1398-1398.	11.1	8
599	Twoâ€Dimensional Nanostructures by the Assembly of <i>n</i> â€Type Tetraazaanthraceneâ€Based Conjugated Molecules. ChemPhysChem, 2013, 14, 2954-2960.	1.0	8
600	An ionic self-assembly approach towards sandwich-like graphene/SnO ₂ /graphene nanosheets for enhanced lithium storage. RSC Advances, 2014, 4, 57869-57874.	1.7	8
601	Nonplanar Ladder-Type Polycyclic Conjugated Molecules: Structures and Solid-State Properties. Crystal Growth and Design, 2015, 15, 3332-3338.	1.4	8
602	High-performance deformable photoswitches with p-doped graphene as the top window electrode. Journal of Materials Chemistry C, 2015, 3, 37-40.	2.7	8
603	Derivatizing Tribenzothiopheneâ€Fused Hexaâ€ <i>peri</i> â€hexabenzocoronenes with Tunable Optoelectronic Properties. Chemistry - an Asian Journal, 2016, 11, 2107-2112.	1.7	8
604	Covalently Interlocked Cyclohexaâ€∢i>mà€phenylenes and Their Assembly: En Route to Supramolecular 3D Carbon Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 10602-10606.	7.2	8
605	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
606	Azaarene Dimers. Chemistry - A European Journal, 2019, 25, 7285-7291.	1.7	8
607	Topochemical Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphides Using Phosphorene Templates. Angewandte Chemie, 2020, 132, 473-478.	1.6	8
608	Ambient Bistable Single Dipole Switching in a Molecular Monolayer. Angewandte Chemie - International Edition, 2020, 59, 14049-14053.	7.2	8
609	Raman spectroscopy of holey nanographene C216 . Journal of Raman Spectroscopy, 2021, 52, 2301-2316.	1.2	8
610	Large Acene Derivatives with B–N Lewis Pair Doping: Synthesis, Characterization, and Application. Organic Letters, 2022, 24, 1877-1882.	2.4	8
611	Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films. Nature Communications, 2022, 13, .	5.8	8
612	Optical switching studies of an azobenzene rigidly linked toÂaÂhexa-peri-hexabenzocoronene derivative in solution andÂatÂaÂsolid–liquid interface. Applied Physics A: Materials Science and Processing, 2008, 93, 277-283.	1.1	7

#	Article	IF	Citations
613	From 2004 to 2014: A Fruitful Decade for Graphene Research in China. Small, 2014, 10, 2121-2121.	5.2	7
614	Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7485-7492.	3.2	7
615	Polycyclic Aromatic Hydrocarbons Containing A Pyrrolopyridazine Core. ChemPlusChem, 2019, 84, 613-618.	1.3	7
616	Dynamical nuclear decoupling of electron spins in molecular graphenoid radicals and biradicals. Physical Review B, 2020, 101, .	1.1	7
617	Oligophenyls with Multiple Disulfide Bridges as Higher Homologues of Dibenzo[<i>></i> , <i>e</i>][1,2]dithiin: Synthesis and Application in Lithiumâ€ion Batteries. Chemistry - A European Journal, 2020, 26, 8007-8011.	1.7	7
618	Surfaceâ€Modified Phthalocyanineâ€Based Twoâ€Dimensional Conjugated Metal–Organic Framework Films for Polarityâ€Selective Chemiresistive Sensing. Angewandte Chemie, 2021, 133, 18814-18820.	1.6	7
619	Introduction to †Chemistry of 2D materials: graphene and beyond'. Nanoscale, 2020, 12, 24309-24310.	2.8	7
620	Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials, 2022, 12, 224.	1.9	7
621	An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angewandte Chemie, 2022, 134, .	1.6	7
622	Ï€â€Extended <i>peri</i> i>â€Acenes: Recent Progress in Synthesis and Characterization. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
623	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
624	Large polycyclic aromatic hydrocarbons for application in donor–acceptor photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 785-789.	0.8	6
625	Bifunctional Catalysts for Metalâ€Air Batteries. Batteries and Supercaps, 2019, 2, 270-271.	2.4	6
626	Synthetic tuning of the quantum properties of open-shell radicaloids. CheM, 2021, 7, 1363-1378.	5.8	6
627	Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)*. Chinese Physics B, 2021, 30, 077306.	0.7	6
628	Onâ€Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie, 2021, 133, 25755-25760.	1.6	6
629	A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boronâ€doped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 25899.	1.6	6
630	Zusammenrýcken und Stapeln: von atmenden Poren zu dreidimensionaler ionischer Selbstorganisation unter elektrochemischer Kontrolle. Angewandte Chemie, 2014, 126, 13165-13168.	1.6	5

#	Article	IF	CITATIONS
631	Threeâ€dimensional Carbon Nitride/Graphene Framework as a Highâ€Performance Cathode for Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2016, 11, 1194-1198.	1.7	5
632	Energy Storage: A Lyotropic Liquid rystalâ€Based Assembly Avenue toward Highly Oriented Vanadium Pentoxide/Graphene Films for Flexible Energy Storage (Adv. Funct. Mater. 12/2017). Advanced Functional Materials, 2017, 27, .	7.8	5
633	Advancing Materials Electrochemistry for Chemical Transformation. Advanced Materials, 2019, 31, e1903622.	11.1	5
634	Carbon Nanoparticles' Impact on Processability and Physical Properties of Epoxy Resins—A Comprehensive Study Covering Rheological, Electrical, Thermo-Mechanical, and Fracture Properties (Mode I and II). Polymers, 2019, 11, 231.	2.0	5
635	One-pot synthesis of dicyclopenta-fused peropyrene via a fourfold alkyne annulation. Beilstein Journal of Organic Chemistry, 2020, 16, 791-797.	1.3	5
636	Solvent-mediated engineering of copper-metalated acetylenic polymer scaffolds with enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2021, 9, 9729-9734.	5.2	5
637	Protein-based (bio)materials: a way toward high-performance graphene enzymatic biosensors. Journal of Materials Chemistry C, 2022, 10, 5466-5473.	2.7	5
638	Synthesis and Characterization of <i>peri</i> i>â€Heptacene on a Metallic Surface. Angewandte Chemie, 2022, 134, .	1.6	5
639	Control of Crystallinity of Vinyleneâ€Linked Twoâ€Dimensional Conjugated Polymers by Rational Monomer Design. Chemistry - A European Journal, 2022, 28, .	1.7	5
640	Preparation of Propargyl-terminated Polylactide by the Bulk Ring-opening Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 937-942.	1.2	4
641	Twoâ€Dimensional Materials: A Powerful Platform for Energy Applications. ChemNanoMat, 2017, 3, 338-339.	1.5	4
642	NBN-doped nanographene embedded with five- and seven-membered rings on $Au(111)$ surface*. Chinese Physics B, 2021, 30, 056802.	0.7	4
643	NBNâ€Doped Bisâ€Tetracene and Periâ€Tetracene: Synthesis and Characterization. Angewandte Chemie, 0, , .	1.6	4
644	Scalable one-step production of electrochemically exfoliated graphene decorated with transition metal oxides for high-performance supercapacitors. Nanoscale, 2021, 13, 15859-15868.	2.8	4
645	Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomedical Materials (Bristol), 2021, 16, 015008.	1.7	4
646	Onâ€Surface Formation of Cyanoâ€Vinylene Linked Chains by Knoevenagel Condensation. Chemistry - A European Journal, 2021, 27, 17336-17340.	1.7	4
647	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinyleneâ€Linked 2D Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	4
648	Vibrational excitations in molecular layers probed by ballistic electron microscopy. Nanotechnology, 2011, 22, 435701.	1.3	3

#	Article	lF	CITATIONS
649	<i>Ab initio</i> characterization of graphene nanoribbons and their polymer precursors. Journal of Physics Condensed Matter, 2012, 24, 104023.	0.7	3
650	Anion-induced self-assembly of positively charged polycyclic aromatic hydrocarbons towards nanostructures with controllable two-dimensional morphologies. CrystEngComm, 2016, 18, 877-880.	1.3	3
651	Synthesis and Characterization of AlE-Active B–N-Coordinated Phenalene Complexes. Organic Materials, 2020, 02, 240-247.	1.0	3
652	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
653	Ambient Bistable Single Dipole Switching in a Molecular Monolayer. Angewandte Chemie, 2020, 132, 14153-14157.	1.6	3
654	Graphene Oxide Framework Structures and Coatings: Impact on Cell Adhesion and Pre-Vascularization Processes for Bone Grafts. International Journal of Molecular Sciences, 2022, 23, 3379.	1.8	3
655	Benzoâ€Extended Cyclohepta[<i>def</i>]fluorene Derivatives with Very Lowâ€Lying Triplet States. Angewandte Chemie, 0, , .	1.6	3
656	Synthesis of Block Copolymers Based on $\langle i \rangle N \langle i \rangle$ -alkyl Substituted Acrylamide via Combination of Reversible Addition-Fragmentation Transfer Polymerization and Click Chemistry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 65-71.	1.2	2
657	Electrocatalysis: Strongly Coupled 3D Hybrids of N-doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis (Small 44/2015). Small, 2015, 11, 5939-5939.	5. 2	2
658	Siliciumâ€kompatible Mikroâ€Superkondensatoren. Angewandte Chemie, 2016, 128, 6244-6246.	1.6	2
659	Shapeâ€Persistent Graphite Replica of Metal Wires. Advanced Materials, 2017, 29, 1603732.	11.1	2
660	Broadband Photodetectors: Demonstration of a Broadband Photodetector Based on a Twoâ€Dimensional Metal–Organic Framework (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070071.	11.1	2
661	Synthesis and Self-Assembly Behavior of Double Ullazine-Based Polycyclic Aromatic Hydrocarbons. Organic Materials, 2021, 03, 198-203.	1.0	2
662	Thiophenâ€basierte konjugierte acetylenische Polymere mit dualen aktiven Zentren für effiziente Cokatalysatorâ€freie photoelektrochemische Wasserreduktion im alkalischen Medium. Angewandte Chemie, 2021, 133, 19025-19031.	1.6	2
663	Sniffing out cancer in the breath: detection of non-polar volatile compounds through carrier scattering in random networks of carbon nanotubes. , 2009, , .		1
664	Self-Assembly: Self-Assembly and Microstructural Control of a Hexa-peri-hexabenzocoronene-Perylene Diimide Dyad by Solvent Vapor Diffusion (Small 20/2011). Small, 2011, 7, 2840-2840.	5.2	1
665	One-step preparation of novel conjugated porous polymer with tubular structure. Science China Chemistry, 2013, 56, 1112-1118.	4.2	1
666	Kovalent gebundene, ineinander verkettete Cyclohexaâ€ <i>m</i> â€phenylene und ihre Selbstorganisation: Auf dem Weg zu supramolekularen 3Dâ€Kohlenstoffnanostrukturen. Angewandte Chemie, 2017, 129, 10738-10742.	1.6	1

#	Article	IF	CITATIONS
667	Acidic Electrolytes: Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070210.	7.8	1
668	Facile assembly of layer-interlocked graphene heterostructures as flexible electrodes for Li-ion batteries. Faraday Discussions, 2021, 227, 321-331.	1.6	1
669	A Twoâ€Dimensional Polyimideâ€Graphene Heterostructure with Ultraâ€fast Interlayer Charge Transfer. Angewandte Chemie, 2021, 133, 13978-13983.	1.6	1
670	A Special Collection on 2D Materials and Their Applications. Chemistry - an Asian Journal, 2021, 16, 4009-4009.	1.7	1
671	Ultrafast carrier dynamics in graphene and graphene nanostructures. Terahertz Science & Technology, 2020, 13, 135-148.	0.5	1
672	Terahertz photoconductivity of graphene nanostructures., 2013,,.		0
673	Rýcktitelbild: Two-Dimensional Sandwich-Type, Graphene-Based Conjugated Microporous Polymers (Angew. Chem. 37/2013). Angewandte Chemie, 2013, 125, 10044-10044.	1.6	0
674	Terahertz Carrier Dynamics in Graphene and Graphene Nanostructures. , 2014, , .		0
675	Graphene Nanoribbons. , 2014, , 1-7.		0
676	12. Graphene-metal oxide hybrids for lithium ion batteries and electrochemical capacitors. , 2014, , 319-340.		0
677	Materials Research at Shanghai Jiao Tong University. Advanced Materials, 2015, 27, 400-402.	11.1	0
678	Thermodynamic picture of terahertz conduction in graphene., 2016,,.		0
679	Controlled Morphologies by Molecular Design and Nano-Imprint Lithography. Advances in Polymer Science, 2017, , 215-242.	0.4	O
680	Two-dimensional electronic spectroscopy of graphene nanoribbons in organic solution. EPJ Web of Conferences, 2019, 205, 05005.	0.1	0
681	Innenrýcktitelbild: Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles (Angew. Chem. 4/2020). Angewandte Chemie, 2020, 132, 1759-1759.	1.6	0
682	Neuromorphic hybrid systems based on polarizable thin film-coated silicon nanowire field-effect transistors. , $2021, , .$		0
683	Room-temperature coherence boosting of molecular graphenoids by environmental spectral decomposition. Physical Review B, 2022, 105, .	1.1	0
684	Initial Coupling and Reaction Progression of Directly Deposited Biradical Graphene Nanoribbon Monomers on Iodine-Passivated Versus Pristine Ag(111). Chemistry, 2022, 4, 259-269.	0.9	0

Article IF Citations

Innentitelbild: Synthesis and Characterization of <i>peri</i>ê685 Innentitelbild: Synthesis and Characterization of <i>peri</i>e70.784314 rgBT /C