Naoko Yoshimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040769/publications.pdf

Version: 2024-02-01

		643344	889612
22	1,938	15	19
papers	citations	h-index	g-index
23	23	23	2346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulphur starvation induces the expression of microRNAâ€395 and one of its target genes but in different cell types. Plant Journal, 2009, 57, 313-321.	2.8	377
2	Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant Journal, 2002, 29, 465-473.	2.8	320
3	Phloem-Localizing Sulfate Transporter, Sultr1;3, Mediates Re-Distribution of Sulfur from Source to Sink Organs in Arabidopsis. Plant Physiology, 2003, 131, 1511-1517.	2.3	195
4	Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant Journal, 2011, 66, 863-876.	2.8	189
5	Disruption of Adenosine-5′-Phosphosulfate Kinase in <i>Arabidopsis</i> Reduces Levels of Sulfated Secondary Metabolites. Plant Cell, 2009, 21, 910-927.	3.1	180
6	Posttranscriptional Regulation of High-Affinity Sulfate Transporters in Arabidopsis by Sulfur Nutrition. Plant Physiology, 2007, 145, 378-388.	2.3	134
7	Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 2484-2496.	3.1	121
8	Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters. Frontiers in Plant Science, 2012, 2, 119.	1.7	101
9	S-Alk(en)ylcysteine sulfoxides in the genus Allium: proposed biosynthesis, chemical conversion, and bioactivities. Journal of Experimental Botany, 2019, 70, 4123-4137.	2.4	73
10	Garlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin. Frontiers in Plant Science, 2014, 5, 758.	1.7	57
11	Identification of a flavinâ€containing <i>S</i> â€oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant Journal, 2015, 83, 941-951.	2.8	56
12	Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 750.	1.7	38
13	Transcriptome Analysis of Nine Tissues to Discover Genes Involved in the Biosynthesis of Active Ingredients in <i>Sophora flavescens</i> . Biological and Pharmaceutical Bulletin, 2015, 38, 876-883.	0.6	22
14	Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Frontiers in Plant Science, 2015, 6, 426.	1.7	21
15	An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco. Plant Biotechnology, 2014, 31, 141-147.	0.5	20
16	Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnology Reports, 2018, 12, 69-75.	0.9	17
17	Biosynthesis of S-Alk(en)yl-l-Cysteine Sulfoxides in Allium: Retro Perspective. Proceedings of the International Plant Sulfur Workshop, 2017, , 49-60.	0.1	6
18	Anionic Nutrient Transport in Plants: The Molecular Basis of the Sulfate Transporter Gene Family. ,		5

8 2006, 27, 67-80.

#	Article	IF	CITATIONS
19	The ability of callus tissues induced from three Allium plants to accumulate health-beneficial natural products, S-alk(en)ylcysteine sulfoxides. Journal of Natural Medicines, 2022, 76, 803-810.	1.1	3
20	Measurement of Uptake and Root-to-Shoot Distribution of Sulfate in Arabidopsis Seedlings. Bio-protocol, 2016, 6, .	0.2	2
21	Molecular and Cellular Regulation of Sulfate Transport and Assimilation. , 2012, , 25-33.		1
22	æ ড় ‰©ã«ãŠãʿã,‹ç¡«é»"代è¬ã®èª¿ç⁻€. Kagaku To Seibutsu, 2008, 46, 850-858.	0.0	0