
M Josepa Salvado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grape Seed-Derived Procyanidins Have an Antihyperglycemic Effect in Streptozotocin-Induced Diabetic Rats and Insulinomimetic Activity in Insulin-Sensitive Cell Lines. Endocrinology, 2004, 145, 4985-4990.	1.4	305
2	Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. Journal of Nutritional Biochemistry, 2009, 20, 210-218.	1.9	260
3	Grape-Seed Procyanidins Act as Antiinflammatory Agents in Endotoxin-Stimulated RAW 264.7 Macrophages by Inhibiting NFkB Signaling Pathway. Journal of Agricultural and Food Chemistry, 2007, 55, 4357-4365.	2.4	240
4	Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Molecular Nutrition and Food Research, 2010, 54, 37-59.	1.5	222
5	Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB Journal, 2005, 19, 1-24.	0.2	171
6	Grape Seed Procyanidins Prevent Oxidative Injury by Modulating the Expression of Antioxidant Enzyme Systems. Journal of Agricultural and Food Chemistry, 2005, 53, 6080-6086.	2.4	154
7	Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. International Journal of Obesity, 2009, 33, 1007-1012.	1.6	148
8	Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats. Journal of Nutritional Biochemistry, 2011, 22, 380-387.	1.9	140
9	Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Research, 2014, 42, 882-892.	6.5	110
10	Proanthocyanidins in health and disease. BioFactors, 2016, 42, 5-12.	2.6	110
11	Effects of a grapeseed procyanidin extract (GSPE) on insulin resistanceâ~†. Journal of Nutritional Biochemistry, 2010, 21, 961-967.	1.9	99
12	Grape seed proanthocyanidins repress the hepatic lipid regulators miRâ€33 and miRâ€122 in rats. Molecular Nutrition and Food Research, 2012, 56, 1636-1646.	1.5	87
13	Dietary procyanidins enhance transcriptional activity of bile acidâ€activated FXR <i>in vitro</i> and reduce triglyceridemia <i> in vivo</i> in a FXRâ€dependent manner. Molecular Nutrition and Food Research, 2009, 53, 805-814.	1.5	85
14	Determination of procyanidins and their metabolites in plasma samples by improved liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1169-1176.	1.2	84
15	Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. Journal of Nutritional Biochemistry, 2010, 21, 476-481.	1.9	82
16	Roles of proanthocyanidin rich extracts in obesity. Food and Function, 2015, 6, 1053-1071.	2.1	81
17	Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. International Journal of Obesity, 2000, 24, 319-324.	1.6	76
18	Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. International Journal of Obesity, 2005, 29, 934-941.	1.6	72

M JOSEPA SALVADO

#	Article	IF	CITATIONS
19	Dietary procyanidins lower triglyceride levels signaling through the nuclear receptor small heterodimer partner. Molecular Nutrition and Food Research, 2008, 52, 1172-1181.	1.5	69
20	Chronic Administration of Proanthocyanidins or Docosahexaenoic Acid Reversess the Increase of miR-33a and miR-122 in Dyslipidemic Obese Rats. PLoS ONE, 2013, 8, e69817.	1.1	69
21	Antigenotoxic Effect of Grape Seed Procyanidin Extract in Fao Cells Submitted to Oxidative Stress§. Journal of Agricultural and Food Chemistry, 2004, 52, 1083-1087.	2.4	67
22	Protein-ligand Docking: A Review of Recent Advances and Future Perspectives. Current Pharmaceutical Analysis, 2008, 4, 1-19.	0.3	67
23	Isoflavone effect on gene expression profile and biomarkers of inflammation. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 382-390.	1.4	66
24	Long-term supplementation with a low dose of proanthocyanidins normalized liver miR-33a and miR-122 levels in high-fat diet–induced obese rats. Nutrition Research, 2015, 35, 337-345.	1.3	66
25	Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats. British Journal of Nutrition, 2012, 107, 170-178.	1.2	57
26	mi <scp>RNA</scp> s, polyphenols, and chronic disease. Molecular Nutrition and Food Research, 2013, 57, 58-70.	1.5	57
27	Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. International Journal of Molecular Sciences, 2019, 20, 532.	1.8	57
28	Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radical Biology and Medicine, 2013, 60, 107-114.	1.3	56
29	Procyanidin Effects on Adipocyte-Related Pathologies. Critical Reviews in Food Science and Nutrition, 2006, 46, 543-550.	5.4	55
30	Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. Journal of Chromatography A, 2011, 1218, 7399-7414.	1.8	50
31	Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes. Free Radical Research, 2011, 45, 611-619.	1.5	47
32	Procyanidins protect Fao cells against hydrogen peroxide-induced oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 25-30.	1.1	45
33	Acute Administration of Grape Seed Proanthocyanidin Extract Modulates Energetic Metabolism in Skeletal Muscle and BAT Mitochondria. Journal of Agricultural and Food Chemistry, 2011, 59, 4279-4287.	2.4	45
34	Human Apo A-I and Rat Transferrin Are the Principal Plasma Proteins That Bind Wine Catechins. Journal of Agricultural and Food Chemistry, 2002, 50, 2708-2712.	2.4	44
35	Moderate red wine consumption protects the rat against oxidation in vivo. Life Sciences, 1999, 64, 1517-1524.	2.0	43
36	Intracellular Mediators of Procyanidin-Induced Lipolysis in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry, 2005, 53, 262-266.	2.4	43

M JOSEPA SALVADO

#	Article	IF	CITATIONS
37	Phenolic compounds and biological rhythms: Who takes the lead?. Trends in Food Science and Technology, 2021, 113, 77-85.	7.8	43
38	Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells. Journal of Nutritional Biochemistry, 2011, 22, 153-163.	1.9	42
39	The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. Journal of Cheminformatics, 2013, 5, 36.	2.8	42
40	Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats. Journal of Nutritional Biochemistry, 2015, 26, 112-119.	1.9	41
41	Inhibitory Effects of Grape Seed Procyanidins on Foam Cell Formation in Vitro. Journal of Agricultural and Food Chemistry, 2009, 57, 2588-2594.	2.4	38
42	Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese <scp>Z</scp> ucker rats. Molecular Nutrition and Food Research, 2014, 58, 727-737.	1.5	38
43	Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats. Journal of Nutritional Biochemistry, 2014, 25, 151-156.	1.9	37
44	The lipid-lowering effect of dietary proanthocyanidins in rats involves both chylomicron-rich and VLDL-rich fractions. British Journal of Nutrition, 2012, 108, 208-217.	1.2	36
45	Tetramethylated Dimeric Procyanidins Are Detected in Rat Plasma and Liver Early after Oral Administration of Synthetic Oligomeric Procyanidins. Journal of Agricultural and Food Chemistry, 2006, 54, 2543-2551.	2.4	35
46	Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats. Journal of Nutritional Biochemistry, 2014, 25, 1003-1010.	1.9	34
47	Moderate red-wine consumption partially prevents body weight gain in rats fed a hyperlipidic dietâ~†. Journal of Nutritional Biochemistry, 2006, 17, 139-142.	1.9	30
48	Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 783-791.	0.5	30
49	A trimer plus a dimer-gallate reproduce the bioactivity described for an extract of grape seed procyanidins. Food Chemistry, 2009, 116, 265-270.	4.2	28
50	Metabolic Fate of Glucose on 3T3-L1 Adipocytes Treated with Grape Seed-Derived Procyanidin Extract (GSPE). Comparison with the Effects of Insulin. Journal of Agricultural and Food Chemistry, 2005, 53, 5932-5935.	2.4	26
51	In Vivo, in Vitro, and in Silico Studies of Cu/Zn-Superoxide Dismutase Regulation by Molecules in Grape Seed Procyanidin Extract. Journal of Agricultural and Food Chemistry, 2009, 57, 3934-3942.	2.4	25
52	Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity. PLoS ONE, 2013, 8, e55889.	1.1	25
53	Antioxidant effects of a grapeseed procyanidin extract and oleoyl-estrone in obese Zucker rats. Nutrition, 2011, 27, 1172-1176.	1.1	23
54	Identification of Human IKK-2 Inhibitors of Natural Origin (Part I): Modeling of the IKK-2 Kinase Domain, Virtual Screening and Activity Assays. PLoS ONE, 2011, 6, e16903.	1.1	23

#	Article	IF	CITATIONS
55	Identification of human IKK-2 inhibitors of natural origin (Part II): In Silico prediction of IKK-2 inhibitors in natural extracts with known anti-inflammatory activity. European Journal of Medicinal Chemistry, 2011, 46, 6098-6103.	2.6	22
56	Improvement of Mitochondrial Function in Muscle of Genetically Obese Rats after Chronic Supplementation with Proanthocyanidins. Journal of Agricultural and Food Chemistry, 2011, 59, 8491-8498.	2.4	21
57	A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury. Clinical Science, 2014, 127, 527-537.	1.8	20
58	Combination of grape seed proanthocyanidin extract and docosahexaenoic acid-rich oil increases the hepatic detoxification by GST mediated GSH conjugation in a lipidic postprandial state. Food Chemistry, 2014, 165, 14-20.	4.2	20
59	Effects of lactation on circulating plasma metabolites in â€~cafeteria-fed' rats. British Journal of Nutrition, 1986, 55, 139-147.	1.2	18
60	Dominant role of glucagon in the initial induction of phosphoenolpyruvate carboxykinase mRNA in cultured hepatocytes from fetal rats. FEBS Journal, 1992, 210, 1053-1059.	0.2	18
61	Dietary proanthocyanidins modulate the rhythm of BMAL1 expression and induce RORα transactivation in HepG2 cells. Journal of Functional Foods, 2015, 13, 336-344.	1.6	15
62	Consumption of out-of-season orange modulates fat accumulation, morphology and gene expression in the adipose tissue of Fischer 344 rats. European Journal of Nutrition, 2020, 59, 621-631.	1.8	13
63	Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Molecular Nutrition and Food Research, 2022, 66, e2100990.	1.5	13
64	Model for Voluntary Wine and Alcohol Consumption in Rats. Physiology and Behavior, 1997, 62, 353-357.	1.0	12
65	Nonalcoholic components in wine reduce low density lipoprotein cholesterol in normocholesterolemic rats. Lipids, 2001, 36, 383-388.	0.7	12
66	Grape seed procyanidins inhibit the expression of metallothione in genes in human HepG2 cells. Genes and Nutrition, 2007, 2, 105-109.	1.2	12
67	DHA sensitizes FaO cells to tert-BHP-induced oxidative effects. Protective role of EGCG. Food and Chemical Toxicology, 2013, 62, 750-757.	1.8	12
68	Consumption of Cherry out of Season Changes White Adipose Tissue Gene Expression and Morphology to a Phenotype Prone to Fat Accumulation. Nutrients, 2018, 10, 1102.	1.7	12
69	Time-of-Day Circadian Modulation of Grape-Seed Procyanidin Extract (GSPE) in Hepatic Mitochondrial Dynamics in Cafeteria-Diet-Induced Obese Rats. Nutrients, 2022, 14, 774.	1.7	12
70	Regulation of Glutamate Dehydrogenase Expression in the Developing Rat Liver. Control at Different Levels in the Prenatal Period. FEBS Journal, 1996, 235, 677-682.	0.2	11
71	Proanthocyanidins modulate triglyceride secretion by repressing the expression of long chain acyl-CoA synthetases in Caco2 intestinal cells. Food Chemistry, 2011, 129, 1490-1494.	4.2	10
72	Response to the photoperiod in the white and brown adipose tissues of Fischer 344 rats fed a standard or cafeteria diet. Journal of Nutritional Biochemistry, 2019, 70, 82-90.	1.9	10

M JOSEPA SALVADO

#	ARTICLE	IF	CITATIONS
73	Effects of chronic wine and alcohol intake on glutathione and malondialdehyde levels in rats. Nutrition Research, 2000, 20, 1547-1555.	1.3	9
74	Differential Modulation of Apoptotic Processes by Proanthocyanidins as a Dietary Strategy for Delaying Chronic Pathologies. Critical Reviews in Food Science and Nutrition, 2014, 54, 277-291.	5.4	9
75	Differential effects of grape-seed derived procyanidins on adipocyte differentiation markers in different in vivo situations. Genes and Nutrition, 2007, 2, 101-103.	1.2	8
76	Omegaâ€3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat. BioFactors, 2014, 40, 146-156.	2.6	8
77	Regulation of ammonia-metabolizing enzymes expression in the liver of obese rats: Differences between genetic and nutritional obesities. International Journal of Obesity, 1997, 21, 681-685.	1.6	5
78	A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients, 2020, 12, 3251.	1.7	4
79	Postnatal Development of Plasma Amino Acids in Hyperphagic Rats. Annals of Nutrition and Metabolism, 1991, 35, 242-248.	1.0	2
80	Influence of diet and non-essential nitrogen on amino acid metabolism enzymes of developing rats. Nutrition Research, 1992, 12, 955-963.	1.3	1
81	Effect of diet and essential amino acids gavage on young rat amino acid metabolism enzymes. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 103, 817-822.	0.7	0
82	Changes induced in amino acid-enzymes of developing rats by a high-energy diet and glucose gavage. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1993, 101, 71-75.	0.1	0
83	Clutamine force-feeding effect on plasma amino-acid concentrations in growing rats fed a cafeteria diet. Reproduction, Nutrition, Development, 1994, 34, 165-173.	1.9	0
84	In silico identification of red wine catechin binding sites on human and rat serotransferrins. Genes and Nutrition, 2007, 2, 99-100.	1.2	0
85	Flavonoids as Protective Agents Against Diet-Induced Oxidative Damage at Gastrointestinal Tract. , 2017, , 327-338.		0