Claudia Antonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated Cascade Process for the Catalytic Conversion of 5â€Hydroxymethylfurfural to Furanic and TetrahydrofuranicDiethers as Potential Biofuels. ChemSusChem, 2022, 15, .	3.6	14
2	Integrated cascade biorefinery processes for the production of single cell oil by Lipomyces starkeyi from Arundo donax L. hydrolysates. Bioresource Technology, 2021, 325, 124635.	4.8	27
3	Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst. Journal of Industrial and Engineering Chemistry, 2021, 100, 390.e1-390.e9.	2.9	24
4	Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts, 2021, 11, 1082.	1.6	11
5	Electro-oxidative depolymerisation of technical lignin in water using platinum, nickel oxide hydroxide and graphite electrodes. New Journal of Chemistry, 2021, 45, 9647-9657.	1.4	24
6	Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes. Catalysts, 2021, 11, 1291.	1.6	12
7	Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts, 2020, 10, 1221.	1.6	29
8	New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects?. Catalysts, 2020, 10, 961.	1.6	16
9	Optimisation of glucose and levulinic acid production from the cellulose fraction of giant reed (Arundo donax L.) performed in the presence of ferric chloride under microwave heating. Bioresource Technology, 2020, 313, 123650.	4.8	21
10	Experimental analysis of overcharged Li-polymer batteries. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100012.	2.9	1
11	One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts, 2020, 10, 509.	1.6	33
12	From paper mill waste to single cell oil: Enzymatic hydrolysis to sugars and their fermentation into microbial oil by the yeast Lipomyces starkeyi. Bioresource Technology, 2020, 315, 123790.	4.8	40
13	Multi-Step Exploitation of Raw Arundo donax L. for the Selective Synthesis of Second-Generation Sugars by Chemical and Biological Route. Catalysts, 2020, 10, 79.	1.6	23
14	Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride. Bioresource Technology, 2019, 293, 122050.	4.8	22
15	Turning Point toward the Sustainable Production of 5-Hydroxymethyl-2-furaldehyde in Water: Metal Salts for Its Synthesis from Fructose and Inulin. ACS Sustainable Chemistry and Engineering, 2019, 7, 6830-6838.	3.2	22
16	Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Applied Catalysis A: General, 2019, 578, 122-133.	2.2	61
17	Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase. Journal of Cleaner Production, 2019, 209, 1614-1623.	4.6	43
18	Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. Journal of Wood Chemistry and Technology, 2018, 38, 198-213.	0.9	19

CLAUDIA ANTONETTI

#	Article	IF	CITATIONS
19	Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants. Industrial Crops and Products, 2018, 112, 6-17.	2.5	30
20	Ruthenium <i>p</i> -cymene complexes with α-diimine ligands as catalytic precursors for the transfer hydrogenation of ethyl levulinate to γ-valerolactone. New Journal of Chemistry, 2018, 42, 17574-17586.	1.4	19
21	A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent. Bioresource Technology, 2018, 264, 180-189.	4.8	19
22	A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for γ-Valerolactone Sustainable Preparation. Catalysts, 2018, 8, 169.	1.6	29
23	Cascade Strategy for the Tunable Catalytic Valorization of Levulinic Acid and γ-Valerolactone to 2-Methyltetrahydrofuran and Alcohols. Catalysts, 2018, 8, 277.	1.6	48
24	Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Applied Catalysis B: Environmental, 2017, 206, 364-377.	10.8	101
25	Amberlyst A-70: A surprisingly active catalyst for the MW-assisted dehydration of fructose and inulin to HMF in water. Catalysis Communications, 2017, 97, 146-150.	1.6	46
26	Py-GC/MS and HPLC-DAD characterization of hazelnut shell and cuticle: Insights into possible re-evaluation of waste biomass. Journal of Analytical and Applied Pyrolysis, 2017, 127, 321-328.	2.6	18
27	In-depth characterization of valuable char obtained from hydrothermal conversion of hazelnut shells to levulinic acid. Bioresource Technology, 2017, 244, 880-888.	4.8	48
28	Exploitation of Arundo donax L. Hydrolysis Residue for the Green Synthesis of Flexible Polyurethane Foams. BioResources, 2017, 12, .	0.5	26
29	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
30	Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils. Chemosphere, 2016, 159, 72-79.	4.2	17
31	Monitoring/characterization of stickies contaminants coming from a papermaking plant – Toward an innovative exploitation of the screen rejects to levulinic acid. Waste Management, 2016, 49, 469-482.	3.7	34
32	Sustainable conversion of Pinus pinaster wood into biofuel precursors: A biorefinery approach. Fuel, 2016, 164, 51-58.	3.4	42
33	Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: Opening the way to a new class of bio-degradable surfactants. Catalysis Communications, 2016, 73, 84-87.	1.6	36
34	Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnology for Biofuels, 2015, 8, 218.	6.2	41
35	Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters. Molecules, 2015, 20, 21232-21253.	1.7	51
36	Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, 2015, 1-12.	0.6	42

CLAUDIA ANTONETTI

#	Article	IF	CITATIONS
37	A hybrid polyketone–SiO2 support for palladium catalysts and their applications in cinnamaldehyde hydrogenation and in 1-phenylethanol oxidation. Applied Catalysis A: General, 2015, 496, 40-50.	2.2	14
38	Sustainable Production of Levulinic Acid from the Cellulosic Fraction of <i>Pinus Pinaster</i> Wood: Operation in Aqueous Media Under Microwave Irradiation. Journal of Wood Chemistry and Technology, 2015, 35, 315-324.	0.9	30
39	Characterization of the Arundo Donax L. solid residue from hydrothermal conversion: Comparison with technical lignins and application perspectives. Industrial Crops and Products, 2015, 76, 1008-1024.	2.5	43
40	Carbon monoxide-ethene copolymerization catalyzed by [PdCl2(dppb)] in H2O–H(CH2)nCOOH (dppb=1,4-bis(diphenyphosphino)butane; n=0, 1, 2). Journal of Molecular Catalysis A, 2015, 410, 202-208.	4.8	3
41	Two alternative routes for 1,2-cyclohexanediol synthesis by means of green processes: Cyclohexene dihydroxylation and catechol hydrogenation. Applied Catalysis A: General, 2013, 466, 21-31.	2.2	24
42	Chitosan as biosupport for the MW-assisted synthesis of palladium catalysts and their use in the hydrogenation of ethyl cinnamate. Applied Catalysis A: General, 2013, 468, 95-101.	2.2	35
43	Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Applied Surface Science, 2013, 280, 610-618.	3.1	79
44	From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Applied Energy, 2013, 102, 157-162.	5.1	127
45	5 Biomass pretreatment: separation of cellulose , hemicellulose, and lignin – existing technologies and perspectives. , 2012, , 101-122.		7
46	New palladium catalysts on polyketone prepared through different smart methodologies and their use in the hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2012, 447-448, 49-59.	2.2	28
47	A sustainable process for the production of \hat{I}^3 -valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chemistry, 2012, 14, 688.	4.6	304
48	LEVULINIC ACID PRODUCTION FROM WASTE BIOMASS. BioResources, 2012, 7, .	0.5	63
49	Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Applied Catalysis A: General, 2012, 421-422, 99-107.	2.2	80
50	Py-GC/MS characterization of a wild and a selected clone of Arundo donax, and of its residues after catalytic hydrothermal conversion to high added-value products. Journal of Analytical and Applied Pyrolysis, 2012, 94, 223-229.	2.6	25
51	Sonogashira Coupling Catalyzed by Gold Nanoparticles: Does Homogeneous or Heterogeneous Catalysis Dominate?. ChemCatChem, 2010, 2, 1444-1449.	1.8	107
52	An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2010, 386, 124-131.	2.2	62
53	An Innovative Microwave Process for Nanocatalyst Synthesis. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	3
54	Innovative Process for the Synthesis of Nanostructured Ruthenium Catalysts and their Catalytic Performance. Topics in Catalysis, 2009, 52, 1065-1069.	1.3	19

#	ARTICLE	IF	CITATIONS
55	A novel microwave assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanoneâ~†. Applied Catalysis A: General, 2008, 350, 46-52.	2.2	63