
Ruben Zamora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9040086/publications.pdf Version: 2024-02-01

RUBEN ZAMORA

#	Article	IF	CITATIONS
1	IRF3 Signaling within the Mouse Stroma Influences Sepsis Pathogenesis. Journal of Immunology, 2021, 206, 398-409.	0.8	8
2	Exercise Training Decreases Hepatic Injury and Metastases Through Changes in Immune Response to Liver Ischemia/Reperfusion in Mice. Hepatology, 2021, 73, 2494-2509.	7.3	19
3	Machine learning and mechanistic computational modeling of inflammation as tools for designing immunomodulatory biomaterials. , 2021, , 251-272.		2
4	Analysis of the Plasma Metabolome after Trauma, Novel Circulating Sphingolipid Signatures, and In-Hospital Outcomes. Journal of the American College of Surgeons, 2021, 232, 276-287e1.	0.5	17
5	A putative "chemokine switch―that regulates systemic acute inflammation in humans. Scientific Reports, 2021, 11, 9703.	3.3	12
6	The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxidants and Redox Signaling, 2021, 35, 1393-1406.	5.4	8
7	The Effects of Tacrolimus on Tissue-Specific, Protein-Level Inflammatory Networks in Vascularized Composite Allotransplantation. Frontiers in Immunology, 2021, 12, 591154.	4.8	5
8	Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-induced inflammation inferred from analysis of dynamic networks. Molecular Medicine, 2021, 27, 65.	4.4	14
9	Early dynamic orchestration of immunologic mediators identifies multiply injured patients who are tolerant or sensitive to hemorrhage. Journal of Trauma and Acute Care Surgery, 2021, 90, 441-450.	2.1	8
10	Inflammatory signals and network connections implicate cell-mediated immunity in chronic venous insufficiency. Annals of Translational Medicine, 2021, 9, 1643-1643.	1.7	1
11	An Aging-Related Single-Nucleotide Polymorphism is Associated With Altered Clinical Outcomes and Distinct Inflammatory Profiles in Aged Blunt Trauma Patients. Shock, 2020, 53, 146-155.	2.1	6
12	Association Between Inflammatory Pathways and Phenotypes of Pulmonary Dysfunction Using Cluster Analysis in Persons Living With HIV and HIV-Uninfected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 189-196.	2.1	12
13	Computational Derivation of Core, Dynamic Human Blunt Trauma Inflammatory Endotypes. Frontiers in Immunology, 2020, 11, 589304.	4.8	12
14	Dynamics of Systemic Inflammation as a Function of Developmental Stage in Pediatric Acute Liver Failure. Frontiers in Immunology, 2020, 11, 610861.	4.8	4
15	Insights into the association between coagulopathy and inflammation: abnormal clot mechanics are a warning of immunologic dysregulation following major injury. Annals of Translational Medicine, 2020, 8, 1576-1576.	1.7	7
16	Diurnal Variation in Systemic Acute Inflammation and Clinical Outcomes Following Severe Blunt Trauma. Frontiers in Immunology, 2019, 10, 2699.	4.8	10
17	Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS ONE, 2019, 14, e0217577.	2.5	26
18	HMGB1 is a Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute Liver Failure induced by Acetaminophen. Scientific Reports, 2019, 9, 5971.	3.3	18

Ruben Zamora

#	Article	IF	CITATIONS
19	MPPED2 Polymorphism Is Associated With Altered Systemic Inflammation and Adverse Trauma Outcomes. Frontiers in Genetics, 2019, 10, 1115.	2.3	11
20	Hepatic Encephalopathy in Children With Acute Liver Failure. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 108-115.	1.8	14
21	Computational Analysis Supports IL-17A as a Central Driver of Neutrophil Extracellular Trap–Mediated Injury in Liver Ischemia Reperfusion. Journal of Immunology, 2019, 202, 268-277.	0.8	25
22	Decoding the secreted inflammatory response of primary human hepatocytes to hypoxic stress in vitro. Annals of Translational Medicine, 2019, 7, 371-371.	1.7	3
23	Suppressed networks of inflammatory mediators characterize chronic venous insufficiency. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2018, 6, 358-366.	1.6	15
24	An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock, 2018, 49, 259-268.	2.1	27
25	A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice. PLoS Computational Biology, 2018, 14, e1006582.	3.2	18
26	Inflammation and disease: Modelling and modulation of the inflammatory response to alleviate critical illness. Current Opinion in Systems Biology, 2018, 12, 22-29.	2.6	18
27	Differential inflammatory networks distinguish responses to bone marrow-derived versus adipose-derived mesenchymal stem cell therapies in vascularized composite allotransplantation. Journal of Trauma and Acute Care Surgery, 2017, 83, S50-S58.	2.1	12
28	"Thinking―vs. "Talking― Differential Autocrine Inflammatory Networks in Isolated Primary Hepatic Stellate Cells and Hepatocytes under Hypoxic Stress. Frontiers in Physiology, 2017, 8, 1104.	2.8	4
29	Dynamic Data-Driven Modeling for Ex Vivo Data Analysis: Insights into Liver Transplantation and Pathobiology. Computation, 2017, 5, 46.	2.0	2
30	Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Frontiers in Immunology, 2017, 8, 1672.	4.8	15
31	Data-Driven Modeling for Precision Medicine in Pediatric Acute Liver Failure. Molecular Medicine, 2016, 22, 821-829.	4.4	45
32	Dynamic Profiling: Modeling the Dynamics of Inflammation and Predicting Outcomes in Traumatic Brain Injury Patients. Frontiers in Pharmacology, 2016, 7, 383.	3.5	13
33	Machine Perfusion of Porcine Livers with Oxygen-Carrying Solution Results in Reprogramming of Dynamic Inflammation Networks. Frontiers in Pharmacology, 2016, 7, 413.	3.5	12
34	Computational Analysis Supports an Early, Type 17 Cell-Associated Divergence of Blunt Trauma Survival and Mortality*. Critical Care Medicine, 2016, 44, e1074-e1081.	0.9	76
35	Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. Journal of Critical Care, 2016, 36, 146-153.	2.2	55
36	Prehospital Hypotension Is Associated With Altered Inflammation Dynamics and Worse Outcomes Following Blunt Trauma in Humans*. Critical Care Medicine, 2015, 43, 1395-1404.	0.9	57

Ruben Zamora

#	Article	IF	CITATIONS
37	Impact of Injury Severity on Dynamic Inflammation Networks Following Blunt Trauma. Shock, 2015, 44, 101-109.	2.1	61
38	Cardiac Arrest Disrupts Caspase-1 and Patterns of Inflammatory Mediators Differently in Skin and Muscle Following Localized Tissue Injury in Rats: Insights from Data-Driven Modeling. Frontiers in Immunology, 2015, 6, 587.	4.8	6
39	Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation. Antioxidants and Redox Signaling, 2015, 23, 1370-1387.	5.4	82
40	Injuryâ€induced MRP8/MRP14 stimulates IPâ€10/CXCL10 in monocytes/macrophages. FASEB Journal, 2015, 29, 250-262.	0.5	48
41	Trauma in silico: Individual-specific mathematical models and virtual clinical populations. Science Translational Medicine, 2015, 7, 285ra61.	12.4	66
42	Impact of chemically-modified tetracycline 3 on intertwined physiological, biochemical, and inflammatory networks in porcine sepsis/ARDS. International Journal of Burns and Trauma, 2015, 5, 22-35.	0.2	17
43	Inducible Protein-10, a Potential Driver of Neurally Controlled Interleukin-10 and Morbidity in Human Blunt Trauma*. Critical Care Medicine, 2014, 42, 1487-1497.	0.9	57
44	Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice. PLoS ONE, 2013, 8, e67419.	2.5	18
45	Central Role for MCP-1/CCL2 in Injury-Induced Inflammation Revealed by In Vitro, In Silico, and Clinical Studies. PLoS ONE, 2013, 8, e79804.	2.5	91
46	A Biohybrid Device for the Systemic Control of Acute Inflammation. Disruptive Science and Technology, 2012, 1, 20-27.	1.0	11
47	A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine*. Critical Care Medicine, 2012, 40, 1052-1063.	0.9	72
48	Identification of a Novel Pathway of Transforming Growth Factor-β1 Regulation by Extracellular NAD+ in Mouse Macrophages. Journal of Biological Chemistry, 2012, 287, 31003-31014.	3.4	5
49	Hemoadsorption Reprograms Inflammation in Experimental Gram-negative Septic Peritonitis: Insights from In Vivo and In Silico Studies. Molecular Medicine, 2012, 18, 1366-1374.	4.4	52
50	A Dynamic View of Trauma/Hemorrhage-Induced Inflammation in Mice: Principal Drivers and Networks. PLoS ONE, 2011, 6, e19424.	2.5	102
51	Translational Systems Approaches to the Biology of Inflammation and Healing. Immunopharmacology and Immunotoxicology, 2010, 32, 181-195.	2.4	78
52	MATHEMATICAL MODELING OF POSTHEMORRHAGE INFLAMMATION IN MICE. Shock, 2009, 32, 172-178.	2.1	49
53	Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress. American Journal of Physiology - Renal Physiology, 2009, 296, G499-G509.	3.4	36
54	A simple, rapid, and convenient Luminex ^{â"¢} â€compatible method of tissue isolation. Journal of Clinical Laboratory Analysis, 2008, 22, 278-281.	2.1	18

RUBEN ZAMORA

#	Article	IF	CITATIONS
55	Transforming growth factor- \hat{I}^2 in critical illness. Critical Care Medicine, 2005, 33, S478-S481.	0.9	6
56	Nitrosative stress in an animal model of necrotizing enterocolitis. Free Radical Biology and Medicine, 2005, 39, 1428-1437.	2.9	28
57	Intestinal and hepatic expression of BNIP3 in necrotizing enterocolitis: regulation by nitric oxide and peroxynitrite. American Journal of Physiology - Renal Physiology, 2005, 289, G822-G830.	3.4	23
58	A DNA microarray study of nitric oxide-induced genes in mouse hepatocytes: implications for hepatic heme oxygenase-1 expression in ischemia/reperfusion. Nitric Oxide - Biology and Chemistry, 2002, 7, 165-186.	2.7	60
59	Inferring Tissue-Specific, TLR4-Dependent Type 17 Immune Interactions in Experimental Trauma/Hemorrhagic Shock and Resuscitation Using Computational Modeling. Frontiers in Immunology, 0, 13, .	4.8	8