Gail M Preston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9039851/publications.pdf Version: 2024-02-01

CALL M PRESTON

#	Article	IF	CITATIONS
1	Reproductive consequences of transient pathogen exposure across host genotypes and generations. Ecology and Evolution, 2022, 12, e8720.	0.8	2
2	How bacteria overcome flagellin pattern recognition in plants. Current Opinion in Plant Biology, 2022, 67, 102224.	3.5	9
3	Approaching the domesticated plant holobiont from a community evolution perspective. Microbiology (United Kingdom), 2022, 168, .	0.7	1
4	Tradeâ€offs in defence to pathogen species revealed in expanding nematode populations. Journal of Evolutionary Biology, 2022, 35, 1002-1011.	0.8	0
5	Pleiotropic constraints promote the evolution of cooperation in cellular groups. PLoS Biology, 2022, 20, e3001626.	2.6	5
6	From macro to micro: a combined bioluminescenceâ€fluorescence approach to monitor bacterial localization. Environmental Microbiology, 2021, 23, 2070-2085.	1.8	9
7	Agromonas: a rapid disease assay for <i>Pseudomonas syringae</i> growth in agroinfiltrated leaves. Plant Journal, 2021, 105, 831-840.	2.8	17
8	AgroLux: bioluminescent <i>Agrobacterium</i> to improve molecular pharming and study plant immunity. Plant Journal, 2021, 108, 600-612.	2.8	7
9	The effect of plant domestication on host control of the microbiota. Communications Biology, 2021, 4, 936.	2.0	31
10	Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules, 2020, 10, 661.	1.8	63
11	Variation in defence strategies in the metal hyperaccumulator plant <i>Noccaea caerulescens</i> is indicative of synergies and trade-offs between forms of defence. Royal Society Open Science, 2019, 6, 172418.	1.1	12
12	Pseudomonas syringae: enterprising epiphyte and stealthy parasite. Microbiology (United Kingdom), 2019, 165, 251-253.	0.7	25
13	Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science, 2019, 364, .	6.0	102
14	Methods to Quantify Biotic-Induced Stress in Plants. Methods in Molecular Biology, 2018, 1734, 241-255.	0.4	25
15	Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Industrial Crops and Products, 2018, 124, 755-764.	2.5	57
16	Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Molecular Microbiology, 2018, 110, 444-454.	1.2	10
17	Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 2018, 122, 582-590.	2.5	78
18	Plant RNA Interactome Capture: Revealing the Plant RBPome. Trends in Plant Science, 2017, 22, 449-451.	4.3	12

GAIL M PRESTON

#	Article	IF	CITATIONS
19	Profiling the extended phenotype of plant pathogens. Molecular Plant Pathology, 2017, 18, 443-456.	2.0	24
20	Measurement of Oxygen Status in Arabidopsis Leaves Undergoing the Hypersensitive Response During Pseudomonas Infection. Methods in Molecular Biology, 2017, 1670, 71-76.	0.4	1
21	Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo. Wellcome Open Research, 2017, 2, 104.	0.9	11
22	Early changes in apoplast composition associated with defence and disease in interactions between <i>Phaseolus vulgaris</i> and the halo blight pathogen <i>Pseudomonas syringae</i> Pv. phaseolicola. Plant, Cell and Environment, 2016, 39, 2172-2184.	2.8	102
23	Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160648.	1.2	11
24	The genomic basis of adaptation to the fitness cost of rifampicin resistance in <i>Pseudomonas aeruginosa</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152452.	1.2	25
25	A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host. Environmental Microbiology, 2016, 18, 4144-4152.	1.8	22
26	The <i>Sinorhizobium</i> (<i>Ensifer</i>) <i>fredii</i> HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. Molecular Plant-Microbe Interactions, 2015, 28, 790-799.	1.4	38
27	Phytomonas: Trypanosomatids Adapted to Plant Environments. PLoS Pathogens, 2015, 11, e1004484.	2.1	52
28	Linking System-Wide Impacts of RNA Polymerase Mutations to the Fitness Cost of Rifampin Resistance in Pseudomonas aeruginosa. MBio, 2014, 5, e01562.	1.8	55
29	Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13331-13336.	3.3	60
30	The Infiltration-centrifugation Technique for Extraction of Apoplastic Fluid from Plant Leaves Using Phaseolus vulgaris as an Example. Journal of Visualized Experiments, 2014, , .	0.2	63
31	<i>Pseudomonas protegens</i> Pf-5 Causes Discoloration and Pitting of Mushroom Caps Due to the Production of Antifungal Metabolites. Molecular Plant-Microbe Interactions, 2014, 27, 733-746.	1.4	26
32	Increased β-Cyanoalanine Nitrilase Activity Improves Cyanide Tolerance and Assimilation in Arabidopsis. Molecular Plant, 2014, 7, 231-243.	3.9	30
33	Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant <i><scp>N</scp>occaea caerulescens</i> . New Phytologist, 2013, 199, 916-924.	3.5	33
34	The impact of transition metals on bacterial plant disease. FEMS Microbiology Reviews, 2013, 37, 495-519.	3.9	105
35	<i>Pseudomonas fluorescens</i> NZI7 repels grazing by <i>C. elegans</i> , a natural predator. ISME Journal, 2013, 7, 1126-1138.	4.4	34
36	The current status of the elemental defense hypothesis in relation to pathogens. Frontiers in Plant Science, 2013, 4, 395.	1.7	79

GAIL M PRESTON

#	Article	IF	CITATIONS
37	Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature Chemical Biology, 2012, 8, 960-962.	3.9	135
38	Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiology Letters, 2012, 327, 1-8.	0.7	94
39	The metabolic interface between Pseudomonas syringae and plant cells. Current Opinion in Microbiology, 2011, 14, 31-38.	2.3	37
40	<i>Pseudomonas fluorescens</i> BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environmental Microbiology Reports, 2011, 3, 203-210.	1.0	53
41	Comparative Analysis of Metabolic Networks Provides Insight into the Evolution of Plant Pathogenic and Nonpathogenic Lifestyles in Pseudomonas. Molecular Biology and Evolution, 2011, 28, 483-499.	3.5	45
42	Mutations in γ-aminobutyric acid (CABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant Journal, 2010, 64, 318-330.	2.8	102
43	Metal Hyperaccumulation Armors Plants against Disease. PLoS Pathogens, 2010, 6, e1001093.	2.1	111
44	A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny. PLoS Computational Biology, 2010, 6, e1000868.	1.5	18
45	Agroinfiltration Reduces ABA Levels and Suppresses Pseudomonas syringae-Elicited Salicylic Acid Production in Nicotiana tabacum. PLoS ONE, 2010, 5, e8977.	1.1	37
46	Nitrilase enzymes and their role in plant–microbe interactions. Microbial Biotechnology, 2009, 2, 441-451.	2.0	118
47	Life of microbes that interact with plants. Microbial Biotechnology, 2009, 2, 412-415.	2.0	11
48	A conserved mechanism for nitrile metabolism in bacteria and plants. Plant Journal, 2009, 57, 243-253.	2.8	54
49	<i>Pseudomonas syringae</i> pv. <i>syringae</i> B728a hydrolyses indoleâ€3â€acetonitrile to the plant hormone indoleâ€3â€acetic acid. Molecular Plant Pathology, 2009, 10, 857-865.	2.0	39
50	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	13.9	370
51	Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Molecular Microbiology, 2008, 41, 999-1014.	1.2	190
52	Bacterial mycophagy: definition and diagnosis of a unique bacterial–fungal interaction. New Phytologist, 2008, 177, 859-876.	3.5	150
53	<i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 Uses Constitutive and Apoplast-Induced Nutrient Assimilation Pathways to Catabolize Nutrients That Are Abundant in the Tomato Apoplast. Molecular Plant-Microbe Interactions, 2008, 21, 269-282.	1.4	213
54	Metropolitan Microbes: Type III Secretion in Multihost Symbionts. Cell Host and Microbe, 2007, 2, 291-294.	5.1	73

GAIL M PRESTON

#	Article	IF	CITATIONS
55	Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Environmental Microbiology, 2007, 9, 3046-3064.	1.8	30
56	Quantitativein situassay of salicylic acid in tobacco leaves using a genetically modified biosensor strain ofAcinetobactersp. ADP1. Plant Journal, 2006, 46, 1073-1083.	2.8	115
57	Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiology Reviews, 2005, 29, 331-360.	3.9	50
58	Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiology Reviews, 2005, 29, 331-360.	3.9	44
59	Protein domains and architectural innovation in plant-associated Proteobacteria. BMC Genomics, 2005, 6, 17.	1.2	13
60	Genetic Characterization of Pseudomonas fluorescens SBW25 rsp Gene Expression in the Phytosphere and In Vitro. Journal of Bacteriology, 2005, 187, 8477-8488.	1.0	48
61	Plant perceptions of plant growth-promoting Pseudomonas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 907-918.	1.8	180
62	The Type III Secretion Systems of Plant-Associated Pseudomonads: Genes and Proteins on the Move. , 2004, , 181-219.		2
63	Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 2003, 12, 3109-3121.	2.0	144
64	Pseudomonas syringaepv.tomato: the right pathogen, of the right plant, at the right time. Molecular Plant Pathology, 2000, 1, 263-275.	2.0	158
65	In vivo expression technology strategies: valuable tools for biotechnology. Current Opinion in Biotechnology, 2000, 11, 440-444.	3.3	59
66	Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology (United Kingdom), 2000, 146, 2447-2456.	0.7	71
67	Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Current Opinion in Microbiology, 1998, 1, 589-597.	2.3	65
68	Characterization of the <i>hrpC</i> and <i>hrpRS</i> Operons of <i>Pseudomonas syringae</i> Pathovars Syringae, Tomato, and Glycinea and Analysis of the Ability of <i>hrpF</i> , <i>hrpG</i> , <i>hrpG</i> , <i>hrpT</i> , and <i>hrpV</i> Mutants To Elicit the Hypersensitive Response and Disease in Plants. Journal of Bacteriology, 1998, 180, 4523-4531.	1.0	88
69	Negative Regulation of <i>hrp</i> Genes in <i>Pseudomonas syringae</i> by HrpV. Journal of Bacteriology, 1998, 180, 4532-4537.	1.0	96
70	The <i>Pseudomonas syringae</i> pv. tomato HrpW Protein Has Domains Similar to Harpins and Pectate Lyases and Can Elicit the Plant Hypersensitive Response and Bind to Pectate. Journal of Bacteriology, 1998, 180, 5211-5217.	1.0	180
71	Extracellular Proteins as Determinants of Pathogenicity in Pseudomonas syringae. Developments in Plant Pathology, 1997, , 325-332.	0.1	1
72	The HrpZ Proteins of <i>Pseudomonas syringae</i> pvs. <i>syringae, glycinea,</i> and <i>tomato</i> Are Encoded by an Operon Containing <i>Yersinia ysc</i> Homologs and Elicit the Hypersensitive Response in Tomato but not Soybean. Molecular Plant-Microbe Interactions, 1995, 8, 717.	1.4	109

1

 The Role of Pseudomonas Syringae and Erwinia Chrysanthemi Hrp Gene Products in Plant Interactions. Current Plant Science and Biotechnology in Agriculture, 1994, , 49-56. 	#	ARTICLE	IF	CITATIONS
	73	The Role of Pseudomonas Syringae and Erwinia Chrysanthemi Hrp Gene Products in Plant Interactions. Current Plant Science and Biotechnology in Agriculture, 1994, , 49-56.	0.0	2

74 Genomic Analysis of Plant Pathogenic Bacteria. , 0, , 392-418.