Andrey M Popov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9039493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three calibration techniques combined with sample-effective design of experiment based on Latin hypercube sampling for direct detection of lanthanides in REE-rich ores using TXRF and WDXRF. Journal of Analytical Atomic Spectrometry, 2021, 36, 224-232.	1.6	18
2	Tackling the FeO orange band puzzle in meteor and airglow spectra through combined astronomical and laboratory studies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4296-4306.	1.6	6
3	Evaluation of Aging of Reinforced Concrete Structures by Laser-Induced Breakdown Spectroscopy of Reinforcement Corrosion Products. Journal of Applied Spectroscopy, 2020, 87, 800-804.	0.3	3
4	Shift of ionization equilibrium in spatially confined laser induced plasma. Journal of Analytical Atomic Spectrometry, 2019, 34, 1975-1981.	1.6	6
5	The effect of hyperfine splitting on Stark broadening for three blue-green Cu i lines in laser-induced plasma. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5594-5603.	1.6	7
6	Stationary model of laser-induced plasma: Critical evaluation and applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 158, 105632.	1.5	24
7	Determination of the Mn/Fe Ratio in Ferromanganese Nodules Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 316-320.	0.2	5
8	Emission spectroscopy of long cylindrical laser spark with additional coaxial excitation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 157, 22-26.	1.5	7
9	Confinement of Laser Plasma by Shock Waves for Increasing Signal Intensity in Spectrochemical Determination of Trace Elements in Ores. Technical Physics Letters, 2018, 44, 73-76.	0.2	9
10	Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 140, 65-72.	1.5	32
11	Matrix effects on laser-induced plasma parameters for soils and ores. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 148, 205-210.	1.5	33
12	Comment on "Laser produced plasma diagnosis of carcinogenic heavy metals in gallstones―by M. A. Gondal, M. A. Shemis, A. A. I. Khalil, M. M. Nasr and B. Gondal, <i>JAAS</i> , 2016, 31 , 506. Journal of Analytical Atomic Spectrometry, 2017, 32, 2053-2055.	1.6	1
13	Orthogonal and Collinear Configurations in Double-Pulse Laser-Induced Breakdown Spectrometry to Improve Sensitivity in Chlorine Determination. Journal of Applied Spectroscopy, 2017, 84, 319-323.	0.3	10
14	Experimental Stark parameters of Mn I lines in the y6P° → a 6 S multiplet under conditions of "long― laser plasma. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 123, 521-525.	0.2	7
15	Experimental measurements of Stark widths for Mn I lines in long laser spark. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 125, 43-51.	1.5	17
16	A novel approach to sensitivity evaluation of laser-induced breakdown spectroscopy for rare earth elements determination. Journal of Analytical Atomic Spectrometry, 2016, 31, 2223-2226.	1.6	25
17	Determination of copper content in soils and ores by laser-induced breakdown spectrometry. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 339-342.	0.2	5
18	Comments on "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasmaâ€: Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 118, 37-39.	1.5	8

ANDREY M POPOV

#	Article	IF	CITATIONS
19	Rapid, direct determination of strontium in natural waters by laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2016, 31, 1123-1130.	1.6	34
20	Comments on "Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)―by Phuoc et al Fuel, 2016, 167, 375-376.	3.4	3
21	Femtosecond laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2016, 31, 90-118.	1.6	197
22	Enhanced Sensitivity of Direct Beryllium Determination in Soil by Laser-Induced Breakdown Spectrometry. Journal of Applied Spectroscopy, 2015, 82, 739-743.	0.3	11
23	Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry. Russian Chemical Reviews, 2015, 84, 1021-1050.	2.5	51
24	Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy. Optics Express, 2014, 22, 22382.	1.7	23
25	Determination of lithium in lithium-ionic conductors by laser-enhanced ionization spectrometry with laser ablation. Journal of Analytical Atomic Spectrometry, 2014, 29, 176-184.	1.6	4
26	Comparison of single- and multivariate calibration for determination of Si, Mn, Cr and Ni in high-alloyed stainless steels by laser-induced breakdown spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 1417-1424.	1.6	39
27	Measurement system for high-sensitivity LIBS analysis using ICCD camera in LabVIEW environment. Journal of Instrumentation, 2014, 9, P06010-P06010.	0.5	38
28	Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 1925-1933.	1.6	36
29	Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 94-100.	1.5	55
30	Automatic Identification of Emission Lines in Laser-Induced Plasma by Correlation of Model and Experimental Spectra. Analytical Chemistry, 2013, 85, 1985-1990.	3.2	26
31	Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air. Journal of Applied Spectroscopy, 2013, 80, 315-318.	0.3	37
32	Rapid determination of zinc in soils by laser-induced breakdown spectroscopy. Technical Physics Letters, 2013, 39, 81-83.	0.2	11
33	Development of Calibration-Free Laser-Induced-Breakdown-Spectroscopy based techniques for deposited layers diagnostics on ITER-like tiles. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 153-160.	1.5	35
34	Comparison of the thermodynamic and correlation criteria for internal standard selection in laser-induced breakdown spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 57-64.	1.5	30
35	Signal recording system based on a LabVIEWTM virtual instrument using a multichannel high speed ADC. Measurement Techniques, 2011, 54, 213-218.	0.2	5
36	A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 642-657.	1.5	157

ANDREY M POPOV

#	Article	IF	CITATIONS
37	Different calibration strategies to overcome matrix effect in steel analysis by laser-induced breakdown spectroscopy. Proceedings of SPIE, 2010, , .	0.8	2
38	Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils. Journal of Analytical Atomic Spectrometry, 2010, 25, 837.	1.6	147
39	Correlation between properties of a solid sample and laser-induced plasma parameters. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 938-949.	1.5	65
40	Application of Laser-Induced Breakdown Spectrometry for analysis of environmental and industrial materials. Moscow University Chemistry Bulletin, 2009, 64, 366-377.	0.2	11
41	Enhancement of LIBS signal by spatially confining the laser-induced plasma. Journal of Analytical Atomic Spectrometry, 2009, 24, 602.	1.6	92
42	Nonlinear normalization for laser-enhanced ionization spectrometry with laser sampling into a flame. Moscow University Chemistry Bulletin, 2008, 63, 219-223.	0.2	1
43	Correlation between mechanical properties of aluminum alloys and characteristics of laser-induced plasma. Proceedings of SPIE, 2007, 7022, 393.	0.8	4
44	Influence of ferrite surface microstructure on laser ablation. Proceedings of SPIE, 2007, , .	0.8	2
45	Multivariate correction in laser-enhanced ionization with laser sampling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 211-216.	1.5	10
46	Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry. Journal of Analytical Chemistry, 2007, 62, 1151-1155.	0.4	10
47	Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling. Talanta, 2006, 69, 1046-1048.	2.9	10
48	Analytical signal normalization in laser-enhanced ionization spectrometry with laser ablation of solid samples into a flame. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 775-782.	1.5	14