Stephanie K Seidlits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9039484/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Advanced Healthcare Materials, 2022, 11, e2101577.	3.9	15
2	Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials, 2022, 285, 121531.	5.7	48
3	Use of artificial cells as drug carriers. Materials Chemistry Frontiers, 2021, 5, 6672-6692.	3.2	20
4	Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioengineering, 2021, 5, 016104.	3.3	19
5	Extracellular Matrix Proteins Confer Cell Adhesion-Mediated Drug Resistance Through Integrin αv in Glioblastoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 616580.	1.8	17
6	Biomaterials for Personalized Disease Models. Acta Biomaterialia, 2021, 132, 1-3.	4.1	1
7	Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma. Matrix Biology, 2020, 85-86, 128-146.	1.5	46
8	Regenerative Therapies for Spinal Cord Injury. Tissue Engineering - Part B: Reviews, 2019, 25, 471-491.	2.5	100
9	Injectable, Hyaluronic Acid-Based Scaffolds with Macroporous Architecture for Gene Delivery. Cellular and Molecular Bioengineering, 2019, 12, 399-413.	1.0	24
10	Peptideâ€modified, hyaluronic acidâ€based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 704-718.	2.1	64
11	Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma. Cancer Research, 2018, 78, 1358-1370.	0.4	72
12	Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells. Journal of Visualized Experiments, 2018, , .	0.2	14
13	A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons. Advanced Materials, 2018, 30, e1800927.	11.1	78
14	Integrating the glioblastoma microenvironment into engineered experimental models. Future Science OA, 2017, 3, FSO189.	0.9	61
15	Localized lentivirus delivery via peptide interactions. Biotechnology and Bioengineering, 2016, 113, 2033-2040.	1.7	11
16	Reducing neuroinflammation by delivery of ILâ€10 encoding lentivirus from multipleâ€channel bridges. Bioengineering and Translational Medicine, 2016, 1, 136-148.	3.9	35
17	Inflammation Drives Retraction, Stiffening, and Nodule Formation via Cytoskeletal Machinery in a Three-Dimensional Culture Model of Aortic Stenosis. American Journal of Pathology, 2016, 186, 2378-2389.	1.9	25
18	Dynamic transcription factor activity networks in response to independently altered mechanical and adhesive microenvironmental cues. Integrative Biology (United Kingdom), 2016, 8, 844-860.	0.6	28

STEPHANIE K SEIDLITS

#	Article	IF	CITATIONS
19	Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure. Cells Tissues Organs, 2016, 202, 67-84.	1.3	33
20	Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges. Journal of Neuroscience Methods, 2016, 263, 15-22.	1.3	13
21	Gene Delivery Strategies to Promote Spinal Cord Repair. Biomarker Insights, 2015, 10s1, BMI.S20063.	1.0	30
22	Hyaluronic acid and neural stem cells: implications for biomaterial design. Journal of Materials Chemistry B, 2015, 3, 7850-7866.	2.9	50
23	DNA delivery for regeneration. , 2014, , 431-446.		1
24	Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integrative Biology (United Kingdom), 2014, 6, 694-705.	0.6	63
25	Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials, 2013, 34, 2213-2220.	5.7	73
26	Hydrogels for lentiviral gene delivery. Expert Opinion on Drug Delivery, 2013, 10, 499-509.	2.4	56
27	The impact of adhesion peptides within hydrogels on the phenotype and signaling of normal and cancerous mammary epithelial cells. Biomaterials, 2012, 33, 3548-3559.	5.7	48
28	High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. Journal of Neural Engineering, 2011, 8, 046033.	1.8	174
29	Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia, 2011, 7, 2401-2409.	4.1	94
30	The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials, 2010, 31, 3930-3940.	5.7	427
31	Highâ€Resolution Patterning of Hydrogels in Three Dimensions using Directâ€Write Photofabrication for Cell Guidance. Advanced Functional Materials, 2009, 19, 3543-3551.	7.8	112
32	Nanostructured scaffolds for neural applications. Nanomedicine, 2008, 3, 183-199.	1.7	140
33	In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. Journal of Controlled Release, 2005, 104, 521-539.	4.8	59