Masaharu Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/903940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Recombinant Infectious Hepatitis E Virus Harboring the nanoKAZ Gene and Its Application in Drug Screening. Journal of Virology, 2022, 96, jvi0190621.	3.4	9
2	The Capsid (ORF2) Protein of Hepatitis E Virus in Feces Is C-Terminally Truncated. Pathogens, 2022, 11, 24.	2.8	8
3	Subclinical hepatitis E virus (HEV) infection detected by nucleic acid amplification test on blood donation: short-term positivity for immunoglobulin G class of antibody against HEV. Clinical Journal of Gastroenterology, 2022, 15, 750-754.	0.8	2
4	Hepatitis B, C, and D Virus Infections and AFP Tumor Marker Prevalence Among the Elderly Population in Mongolia: A Nationwide Survey. Journal of Preventive Medicine and Public Health, 2022, 55, 263-272.	1.9	3
5	Spontaneous reactivation of hepatitis B virus with a frameshift mutation in the precore region in an elderly hepatitis B virus carrier with lifestyle-related diseases. Clinical Journal of Gastroenterology, 2021, 14, 1202-1210.	0.8	1
6	The spontaneous clearance of hepatitis E virus (HEV) and emergence of HEV antibodies in a transfusion-transmitted chronic hepatitis E case after completion of chemotherapy for acute myeloid leukemia. Clinical Journal of Gastroenterology, 2020, 13, 252-259.	0.8	10
7	A Nationwide Survey of Hepatitis E Virus Infection and Chronic Hepatitis in Heart and Kidney Transplant Recipients in Japan. Transplantation, 2020, 104, 437-444.	1.0	25
8	Prevalence and genotype/subtype distribution of hepatitis E virus (HEV) among wild boars in Japan: Identification of a genotype 5 HEV strain. Virus Research, 2020, 287, 198106.	2.2	19
9	Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells. Virus Research, 2020, 278, 197868.	2.2	16
10	An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4. Virus Research, 2018, 249, 16-30.	2.2	16
11	The identification and characterization of novel rat hepatitis E virus strains in Bali and Sumbawa, Indonesia. Archives of Virology, 2018, 163, 1345-1349.	2.1	11
12	Clinical significance of changes in Torque teno virus DNA titer after chemotherapy in patients with primary lung cancer. Respiratory Investigation, 2018, 56, 173-178.	1.8	12
13	Autochthonous sporadic acute hepatitis E caused by two distinct subgenotype 3b hepatitis E virus strains with only 90% nucleotide identity. Clinical Journal of Gastroenterology, 2017, 10, 168-173.	0.8	4
14	Full-length genome of a novel genotype 3 hepatitis E virus strain obtained from domestic pigs in Japan. Virus Research, 2017, 240, 147-153.	2.2	3
15	Characterization of the Quasi-Enveloped Hepatitis E Virus Particles Released by the Cellular Exosomal Pathway. Journal of Virology, 2017, 91, .	3.4	151
16	Analysis of adaptive mutations selected during the consecutive passages of hepatitis E virus produced from an infectious cDNA clone. Virus Research, 2016, 223, 170-180.	2.2	9
17	Production of monoclonal antibodies against the ORF3 protein of rat hepatitis E virus (HEV) and demonstration of the incorporation of the ORF3 protein into enveloped rat HEV particles. Archives of Virology, 2016, 161, 3391-3404.	2.1	7
18	Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system. Journal of Virological Methods, 2016, 233, 78-88.	2.1	17

#	Article	IF	CITATIONS
19	Molecular characterization of a novel hepatitis E virus (HEV) strain obtained from a wild boar in Japan that is highly divergent from the previously recognized HEV strains. Virus Research, 2014, 180, 59-69.	2.2	62
20	Marked genomic heterogeneity of rat hepatitis E virus strains in Indonesia demonstrated on a full-length genome analysis. Virus Research, 2014, 179, 102-112.	2.2	43
21	The membrane on the surface of hepatitis E virus particles is derived from the intracellular membrane and contains trans-Golgi network protein 2. Archives of Virology, 2014, 159, 979-991.	2.1	69
22	Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines. Virus Research, 2014, 185, 92-102.	2.2	43
23	A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. Journal of General Virology, 2011, 92, 269-278.	2.9	132
24	Hepatitis E Virus (HEV) Strains in Serum Samples Can Replicate Efficiently in Cultured Cells Despite the Coexistence of HEV Antibodies: Characterization of HEV Virions in Blood Circulation. Journal of Clinical Microbiology, 2010, 48, 1112-1125.	3.9	229
25	Construction of an infectious cDNA clone of hepatitis E virus strain JE03-1760F that can propagate efficiently in cultured cells. Journal of General Virology, 2009, 90, 457-462.	2.9	63
26	ORF3 protein of hepatitis E virus is essential for virion release from infected cells. Journal of General Virology, 2009, 90, 1880-1891.	2.9	194
27	Production of monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity in a cell culture system. Archives of Virology, 2008, 153, 657-666.	2.1	61
28	Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Archives of Virology, 2008, 153, 1703-1713.	2.1	140
29	Mutational events during the primary propagation and consecutive passages of hepatitis E virus strain JE03-1760F in cell culture. Virus Research, 2008, 137, 86-96.	2.2	49
30	Prolonged Fecal Shedding of Hepatitis E Virus (HEV) during Sporadic Acute Hepatitis E: Evaluation of Infectivity of HEV in Fecal Specimens in a Cell Culture System. Journal of Clinical Microbiology, 2007, 45, 3671-3679.	3.9	82
31	Development and evaluation of an efficient cell-culture system for Hepatitis E virus. Journal of General Virology, 2007, 88, 903-911.	2.9	224
32	Simultaneous Detection of Immunoglobulin A (IgA) and IgM Antibodies against Hepatitis E Virus (HEV) Is Highly Specific for Diagnosis of Acute HEV Infection. Journal of Clinical Microbiology, 2005, 43, 49-56.	3.9	185
33	TT Virus Is Distributed in Various Leukocyte Subpopulations at Distinct Levels, with the Highest Viral Load in Granulocytes. Biochemical and Biophysical Research Communications, 20 <u>02, 290, 242-248.</u>	2.1	37