List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9039110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emission via Aggregation of Alternating Polymers with <i>o</i> -Carborane and <i>p</i> -Phenyleneâ^Ethynylene Sequences. Macromolecules, 2009, 42, 1418-1420.	2.2	246
2	Multicolor Tuning of Aggregation-Induced Emission through Substituent Variation of Diphenyl- <i>o</i> -carborane. Journal of Organic Chemistry, 2011, 76, 316-319.	1.7	228
3	Nano―and Microsized Cubic Gel Particles from Cyclodextrin Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 10566-10569.	7.2	194
4	Transformation of Metal–Organic Framework to Polymer Gel by Cross-Linking the Organic Ligands Preorganized in Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 5427-5432.	6.6	190
5	Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chemical Communications, 2015, 51, 8614-8617.	2.2	163
6	Consideration of Molecular Structure in the Excited State to Design New Luminogens with Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2019, 58, 8632-8639.	7.2	132
7	Highly Luminescent BODIPY-Based Organoboron Polymer Exhibiting Supramolecular Self-Assemble Structure. Journal of the American Chemical Society, 2008, 130, 15276-15278.	6.6	130
8	Luminescent and Axially Chiral π-Conjugated Polymers Linked by Carboranes in the Main Chain. Macromolecules, 2009, 42, 9238-9242.	2.2	117
9	Stable and Functional Gold Nanorod Composites with a Metal–Organic Framework Crystalline Shell. Chemistry of Materials, 2013, 25, 2565-2570.	3.2	106
10	Consideration of Molecular Structure in the Excited State to Design New Luminogens with Aggregationâ€Induced Emission. Angewandte Chemie, 2019, 131, 8724-8731.	1.6	104
11	Poly(Î ³ -glutamic acid) Hydrogels with Water-Sensitive Luminescence Derived from Aggregation-Induced Emission of <i>o</i> -Carborane. Macromolecules, 2010, 43, 6463-6468.	2.2	98
12	Luminescent <i>m</i> -Carborane-Based π-Conjugated Polymer. Macromolecules, 2009, 42, 2925-2930.	2.2	96
13	Highly Intense Fluorescent Diarylboron Diketonate. Journal of Organic Chemistry, 2008, 73, 8605-8607.	1.7	86
14	1,3-Diketone-Based Organoboron Polymers: Emission by Extending π-Conjugation along a Polymeric Ligand. Macromolecules, 2008, 41, 8295-8298.	2.2	83
15	Twist of Câ•C Bond Plays a Crucial Role in the Quenching of AIE-Active Tetraphenylethene Derivatives in Solution. Journal of Physical Chemistry C, 2018, 122, 245-251.	1.5	81
16	Synthesis of Organoboron Quinoline-8-thiolate and Quinoline-8-selenolate Complexes and Their Incorporation into the π-Conjugated Polymer Main-Chain. Macromolecules, 2009, 42, 2988-2993.	2.2	74
17	Metalâ€free synthesis of responsive polymers: Cloud point tuning by controlled "click―reaction. Journal of Polymer Science Part A, 2010, 48, 1278-1286.	2.5	69
18	A luminescent coordination polymer based on bisterpyridyl ligand containing o-carborane: two tunable emission modes. Dalton Transactions, 2011, 40, 1919.	1.6	68

#	Article	IF	CITATIONS
19	Synthesis and Photostability of Poly(<i>p</i> -phenylenevinylene-borane)s. Macromolecules, 2009, 42, 7217-7220.	2.2	67
20	Stimuli-Responsive Fluorescence of AIE Elastomer Based on PDMS and Tetraphenylethene. Macromolecules, 2014, 47, 6382-6388.	2.2	64
21	Liquefaction-induced emission enhancement of tetraphenylethene derivatives. Chemical Communications, 2017, 53, 2378-2381.	2.2	63
22	Fundamental Molecular Design for Precise Control of Thermoresponsiveness of Organic Polymers by Using Ternary Systems. Journal of the American Chemical Society, 2012, 134, 8344-8347.	6.6	55
23	Polymer Phaseâ€Transition Behavior Driven by a Chargeâ€Transfer Interaction. Angewandte Chemie - International Edition, 2013, 52, 4174-4178.	7.2	54
24	BODIPY-Based Chain Transfer Agent: Reversibly Thermoswitchable Luminescent Gold Nanoparticle Stabilized by BODIPY-Terminated Water-Soluble Polymer. Langmuir, 2010, 26, 15644-15649.	1.6	47
25	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie - International Edition, 2017, 56, 2608-2612.	7.2	47
26	Highly Luminescent Nanoparticles: Self-Assembly of Well-Defined Block Copolymers by Ï€â^'Ï€ Stacked BODIPY Dyes as Only a Driving Force. Macromolecules, 2009, 42, 5446-5452.	2.2	46
27	Thermoresponsive fluorescent waterâ€soluble copolymers containing BODIPY dye: Inhibition of Hâ€aggregation of the BODIPY units in their copolymers by LCST. Journal of Polymer Science Part A, 2010, 48, 627-634.	2.5	44
28	Aromatic Ringâ€Fused Carboraneâ€Based Luminescent π onjugated Polymers. Macromolecular Rapid Communications, 2010, 31, 1389-1394.	2.0	43
29	Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: precise molecular sieving with polymer-grafted metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 23793-23801.	5.2	41
30	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie, 2017, 129, 2652-2656.	1.6	38
31	Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking. Chemical Communications, 2018, 54, 1437-1440.	2.2	36
32	Luminescent alternating boron quinolate–fluorene copolymers exhibiting high electron mobility. Journal of Materials Chemistry, 2010, 20, 5196.	6.7	34
33	Energy transfer from aggregation-induced emissive o-carborane. Tetrahedron Letters, 2011, 52, 293-296.	0.7	34
34	Control of Aggregation-Induced Emission from a Tetraphenylethene Derivative through the Components in the Co-crystal. Crystal Growth and Design, 2018, 18, 3863-3869.	1.4	29
35	Polymer reaction of poly(p-phenylene–ethynylene) by addition of decaborane: modulation of luminescence and heat resistance. Polymer Journal, 2010, 42, 363-367.	1.3	25
36	Rigidity-induced emission enhancement of network polymers crosslinked by tetraphenylethene derivatives. Journal of Materials Chemistry C, 2015, 3, 8504-8509.	2.7	24

#	Article	IF	CITATIONS
37	Quantum yield and morphology control of BODIPY-based supramolecular self-assembly with a chiral polymer inhibitor. Polymer Journal, 2010, 42, 37-42.	1.3	21
38	Network polymers derived from the integration of flexible organic polymers and rigid metal–organic frameworks. Polymer Journal, 2017, 49, 345-353.	1.3	21
39	Crystal Crosslinked Gels with Aggregation-Induced Emissive Crosslinker Exhibiting Swelling Degree-Dependent Photoluminescence. Polymers, 2017, 9, 19.	2.0	21
40	Conversion of azide to primary amine via Staudinger reaction in metal–organic frameworks. CrystEngComm, 2012, 14, 4137.	1.3	19
41	Metal–organic framework tethering pH- and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm, 2020, 22, 1106-1111.	1.3	19
42	Homogeneous anionic PPE hybrids with silica gel. Journal of Polymer Science Part A, 2008, 46, 3749-3755.	2.5	17
43	Stepâ€Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 8018-8023.	7.2	16
44	A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy- <i>o</i> -terphenyl moieties. Materials Advances, 2021, 2, 5639-5644.	2.6	16
45	Visualization of the complexation between chloride and anion receptors using volume change of ionomer gels in organic solvents. Soft Matter, 2012, 8, 7490.	1.2	15
46	Synthesis and Photoluminescence Properties of Pyrene-Incorporated Organic-Inorganic Polymer Hybrids. Polymer Journal, 2008, 40, 402-408.	1.3	12
47	Design and function of smart polymer gels based on ion recognition. Reactive and Functional Polymers, 2013, 73, 951-957.	2.0	12
48	A Hydrogen-Bonded Organic Framework Based on Pyrazinopyrazine. Crystal Growth and Design, 2021, 21, 4656-4664.	1.4	12
49	Direct Synthesis of Liquid Metal Colloids and Their Transmetalation into Noble Metal Nanoparticles. Chemistry Letters, 2014, 43, 1207-1209.	0.7	11
50	Unidirectional compression and expansion of a crosslinked MOF crystal prepared via axis-dependent crosslinking and ligand exchange. Polymer Journal, 2017, 49, 685-689.	1.3	11
51	Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents. Soft Matter, 2018, 14, 581-585.	1.2	11
52	Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2020, 26, 8028-8034.	1.7	11
53	A Facile Synthesis of Chiral Luminescent Organoboron Polymers by Hydroboration Polymerization Utilizing Chiral Borane. Macromolecules, 2009, 42, 1560-1564.	2.2	10
54	Preparation and Morphology Variation of Lipophilic Polyelectrolyte Brush Functioning in Nonpolar Solvents. Chemistry Letters, 2014, 43, 1300-1302.	0.7	10

#	Article	IF	CITATIONS
55	1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. Journal of the American Chemical Society, 2022, 144, 1370-1379.	6.6	10
56	Supramolecularly Designed Thermoresponsive Polymers in Different Polymer Backbones. Macromolecular Chemistry and Physics, 2020, 221, 1900455.	1.1	9
57	Structural Analysis of Lipophilic Polyelectrolyte Solutions and Gels in Low-Polar Solvents. Macromolecules, 2015, 48, 3613-3621.	2.2	8
58	Mesogenic Polyelectrolyte Gels Absorb Organic Solvents and Liquid Crystalline Molecules. Polymers, 2016, 8, 148.	2.0	8
59	Gel thermoresponsiveness driven by switching of the charge-transfer interaction. RSC Advances, 2015, 5, 89319-89322.	1.7	7
60	Emissive tetraphenylethylene (TPE) derivatives in a dissolved state tightly fastened by a short oligo(ethylene glycol) chain. Organic Chemistry Frontiers, 2020, 7, 2649-2656.	2.3	7
61	Poly(<i>p</i> -phenyleneethynylene)–Silica Gel Hybrids without Any Compatibilizer. Chemistry Letters, 2008, 37, 732-733.	0.7	6
62	Amphiphilic Hybrid π onjugated Polymers Containing Polyhedral Oligomeric Silsesquioxanes. Macromolecular Rapid Communications, 2009, 30, 1559-1563.	2.0	6
63	Lipophilic Ionomers with Bulky Ionâ€Pairs and Effect of Counterion on Miscibility of the Ionomer Blends. Macromolecular Chemistry and Physics, 2016, 217, 433-444.	1.1	6
64	Quantum size effect and catalytic activity of nanosized single-crystalline spherical β-Ga2O3 particles by thermal annealing of liquid metal nanoparticles. RSC Advances, 2017, 7, 678-683.	1.7	6
65	Triple Thermoresponsiveness of a TADDOL-Based Homopolymer through the Formation of Supramolecular Complexes with Chiral Guest Molecules at Variable Ratios. ACS Applied Polymer Materials, 2020, 2, 4415-4424.	2.0	6
66	Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion. Langmuir, 2017, 33, 2610-2616.	1.6	5
67	Motility of Microtubules on the Inner Surface of Water-in-Oil Emulsion Droplets. Langmuir, 2017, 33, 12108-12113.	1.6	5
68	Organic Reaction as a Stimulus for Polymer Phase Separation. ACS Macro Letters, 2017, 6, 898-902.	2.3	5
69	Molecular motion of halogenated ethylammonium/[18]crown-6 supramolecular ions in nickel dithiolate magnetic crystals. CrystEngComm, 2021, 23, 2756-2763.	1.3	5
70	Preparation of Lipophilic Anionic Polymer Networks Based on Tetraphenylborates. Chemistry Letters, 2012, 41, 667-668.	0.7	4
71	Construction and Gilding of Metal-Organic Frameworks and Microtubule Conjugates. ChemistrySelect, 2016, 1, 5358-5362.	0.7	4
72	Thermoresponsivity of polymer solution derived from a self-attractive urea unit and a self-repulsive lipophilic ion unit. Polymer Chemistry, 2017, 8, 3921-3925.	1.9	4

#	Article	IF	CITATIONS
73	Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Nonâ€Polar Solvents by using Conductometry. ChemistryOpen, 2018, 7, 269-274.	0.9	4
74	Post-synthetic Modification of Metal-Organic Framework through Urethane Formation. Chemistry Letters, 2019, 48, 285-287.	0.7	4
75	One-dimensional DABCO hydrogen-bonding chain in a hexagonal channel of magnetic [Ni(dmit) ₂]. Dalton Transactions, 2020, 49, 16772-16777.	1.6	3
76	Crystal Crosslinked Gels for the Deposition of Inorganic Salts with Polyhedral Shapes. Gels, 2018, 4, 16.	2.1	2
77	Fundamental Theory and Molecular Design of Thermoresponsive Polymers Expandable to Sustainable and Smart Materials. , 2020, , 351-372.		2
78	Topochemical Polymerizations and Crystal Cross-Linking of Metal Organic Frameworks. , 2015, , 517-530.		2
79	Click Chemistry to Metal-Organic Frameworks as a Synthetic Tool for MOF and Applications for Functional Materials. , 2020, , 523-538.		2
80	Synthesis of pyramidal tetraarylborate pentads. New Journal of Chemistry, 2019, 43, 14853-14858.	1.4	0
81	Stepâ€Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 8102-8107.	1.6	0
82	Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2020, 26, 7965-7965.	1.7	0
83	New Methodology for Polymer Synthesis by Crystal Component Linking. Nihon Kessho Gakkaishi, 2021, 63, 16-23.	0.0	0
84	(Invited) Crystal Crosslinking of Metal-Organic Frameworks for Precise Control of Network Structure in Polymer Gels. ECS Meeting Abstracts, 2018, , .	0.0	0
85	Swelling Behavior of Lipophilic Polyelectrolyte Gels in Organic Solventsâ€Water or Sea Water Binary Mixtures. Macromolecular Chemistry and Physics, 0, , 2100505.	1.1	Ο