Cong Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9039021/publications.pdf Version: 2024-02-01

CONC DENC

#	Article	IF	CITATIONS
1	Benzaldehyde decorated octadecylamine for tailor-made molecular firefighting and efficient thermal energy management. Chemical Engineering Journal, 2022, 431, 133480.	12.7	4
2	Aromatic Schiff Base-Based polymeric phase change materials for Safe, Leak-Free, and efficient thermal energy management. Chemical Engineering Journal, 2022, 437, 135461.	12.7	16
3	Piperazine/Alkene-Containing Phosphoramide Oligomer for the Intumescent Flame Retardation of EPDM Rubber. Polymer Degradation and Stability, 2022, 201, 109990.	5.8	10
4	Recyclable strong and tough polyamide adhesives via noncovalent interactions combined with Energy-Dissipating soft segments. Chemical Engineering Journal, 2022, 446, 137304.	12.7	13
5	A titanium dioxide–carbon nanotube hybrid to simultaneously achieve the mechanical enhancement of natural rubber and its stability under extreme frictional conditions. Materials Advances, 2021, 2, 2408-2418.	5.4	4
6	Fully Bio-Based Phytic Acid–Basic Amino Acid Salt for Flame-Retardant Polypropylene. ACS Applied Polymer Materials, 2021, 3, 1488-1498.	4.4	50
7	Intelligently Thermoresponsive Ionic Liquid toward Molecular Firefighting and Thermal Energy Management. ACS Applied Materials & Interfaces, 2021, 13, 15680-15689.	8.0	6
8	Temperature-Responsive Intumescent Chemistry toward Fire Resistance and Super Thermal Insulation under Extremely Harsh Conditions. Chemistry of Materials, 2021, 33, 6018-6028.	6.7	51
9	Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chemical Engineering Journal, 2021, 417, 129314.	12.7	80
10	Facile synthesis of phytic acid and aluminum hydroxide chelate-mediated hybrid complex toward fire safety of ethylene-vinyl acetate copolymer. Polymer Degradation and Stability, 2021, 190, 109659.	5.8	14
11	Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release. Chemical Engineering Journal, 2021, 420, 129942.	12.7	24
12	Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites. Journal of Materials Science, 2021, 56, 17601-17614.	3.7	7
13	Novel alkynyl-containing phosphonate ester oligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Composites Part B: Engineering, 2020, 199, 108315.	12.0	45
14	Nanoflake-Constructed Supramolecular Hierarchical Porous Microspheres for Fire-Safety and Highly Efficient Thermal Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 28700-28710.	8.0	25
15	Flame Retardation of Natural Rubber: Strategy and Recent Progress. Polymers, 2020, 12, 429.	4.5	35
16	Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chemical Engineering Journal, 2020, 400, 125941.	12.7	81
17	Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105769.	7.6	30
18	Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polymer Degradation and Stability, 2020, 178, 109179.	5.8	40

CONG DENG

#	Article	IF	CITATIONS
19	Hybrid Nanorods Composed of Titanium, Silicon, and Organophosphorus as Additives for Flame-Retardant Polycarbonate. ACS Applied Nano Materials, 2019, 2, 4859-4868.	5.0	24
20	Novel Ultrathin Layered Double Hydroxide Nanosheets with In Situ Formed Oxidized Phosphorus as Anions for Simultaneous Fire Resistance and Mechanical Enhancement of Thermoplastic Polyurethane. ACS Applied Polymer Materials, 2019, 1, 1979-1990.	4.4	24
21	Simultaneously Improved Flame Retardance and Ceramifiable Properties of Polymer-Based Composites via the Formed Crystalline Phase at High Temperature. ACS Applied Materials & Interfaces, 2019, 11, 7459-7471.	8.0	60
22	A novel bio-based flame retardant for polypropylene from phytic acid. Polymer Degradation and Stability, 2019, 161, 298-308.	5.8	138
23	Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polymer Degradation and Stability, 2019, 165, 126-136.	5.8	76
24	Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Composites Part B: Engineering, 2019, 172, 636-648.	12.0	53
25	Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer. Journal of Materials Chemistry A, 2018, 6, 8643-8654.	10.3	78
26	A novel multi-functional polymeric curing agent: Synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency. Chemical Engineering Journal, 2018, 345, 471-482.	12.7	145
27	Improving fire retardancy of ceramifiable polyolefin system via a hybrid of zinc borate@melamine cyanurate. Polymer Degradation and Stability, 2018, 153, 325-332.	5.8	37
28	Novel Core–Shell Hybrid Nanosphere towards the Mechanical Enhancement and Fire Retardance of Polycarbonate. ACS Applied Materials & Interfaces, 2018, 10, 28036-28050.	8.0	54
29	A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polymer Degradation and Stability, 2018, 154, 177-185.	5.8	51
30	Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer. Polymer Degradation and Stability, 2017, 138, 142-150.	5.8	22
31	Influence of small difference in structure of polyamide charring agents on their flame-retardant efficiency in EVA. Polymer Degradation and Stability, 2017, 135, 130-139.	5.8	23
32	A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polymer Degradation and Stability, 2017, 144, 70-82.	5.8	94
33	An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1339-1353.	3.8	44
34	A Novel Linear-Chain Polyamide Charring Agent for the Fire Safety of Noncharring Polyolefin. Industrial & Engineering Chemistry Research, 2016, 55, 7132-7141.	3.7	29
35	A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Composites Science and Technology, 2016, 132, 116-122.	7.8	47
36	Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. RSC Advances, 2016, 6, 30436-30444.	3.6	51

CONG DENG

#	Article	IF	CITATIONS
37	Improving the impact property and heatâ€resistance of PLA/PC blends through coupling molecular chains at the interface. Polymers for Advanced Technologies, 2015, 26, 1247-1258.	3.2	27
38	Super Toughened and High Heat-Resistant Poly(Lactic Acid) (PLA)-Based Blends by Enhancing Interfacial Bonding and PLA Phase Crystallization. Industrial & Engineering Chemistry Research, 2015, 54, 5643-5655.	3.7	78
39	Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.7843	143g8T /C)veztock 10 T
40	Flame-retardant wrapped ramie fibers towards suppressing "candlewick effect―of polypropylene/ramie fiber composites. Chinese Journal of Polymer Science (English Edition), 2015, 33, 84-94.	3.8	32
41	An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems. RSC Advances, 2015, 5, 16328-16339.	3.6	41
42	A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. RSC Advances, 2015, 5, 51248-51257.	3.6	34
43	An efficient flame retardant for silicone rubber: Preparation and application. Polymer Degradation and Stability, 2015, 121, 42-50.	5.8	45
44	Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin. Polymers for Advanced Technologies, 2014, 25, 861-871.	3.2	31
45	Effect of two types of iron MMTs on the flame retardation of LDPE composite. Polymer Degradation and Stability, 2014, 103, 1-10.	5.8	32
46	Synergistic flameâ€retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. Journal of Applied Polymer Science, 2014, 131, .	2.6	23
47	Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polymer Degradation and Stability, 2014, 106, 88-96.	5.8	160
48	An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Applied Materials & amp; Interfaces, 2014, 6, 7363-7370.	8.0	268
49	Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. Journal of Materials Chemistry A, 2014, 2, 13955.	10.3	220
50	Mechanical Properties, Heat Resistance and Flame Retardancy of Glass Fiber-Reinforced PLA-PC Alloys Based on Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 2014, 53, 613-625.	1.9	29
51	An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability, 2014, 108, 97-107.	5.8	87
52	Thermal degradation, flame retardance and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite. Chinese Journal of Polymer Science (English Edition), 2014, 32, 98-107.	3.8	35
53	Mechanical properties and morphology of polypropylene-calcium carbonate nanocomposites prepared by dynamic packing injection molding. Journal of Applied Polymer Science, 2012, 124, 1392-1397.	2.6	9
54	Effect of Vibration Extrusion on Mechanical Properties and Structure of HDPE/OMMT Nanocomposites. Polymer-Plastics Technology and Engineering, 2011, 50, 1091-1095.	1.9	3

CONG DENG

#	Article	IF	CITATIONS
55	Effect of melt vibration on structure and mechanical properties of HDPE/nano-CaCO3 blend. Polymer Bulletin, 2010, 65, 59-68.	3.3	6
56	Mechanical Properties and Crystal Structure of HDPE Induced by Small Amount of High-molecular-weight and Low-molecular-weight Polyethylene under Shear Stress Produced by Dynamic Packing Injection Molding. Polymer-Plastics Technology and Engineering, 2009, 48, 221-226.	1.9	2
57	Study on Rheology of LLDPE under Compound Stress Field of Vibration and Shear in Extrusion Molding. Polymer-Plastics Technology and Engineering, 2009, 48, 1180-1184.	1.9	3
58	Correlation of Oscillation Cycles and Crystallization in HDPE Blends with Small Amounts of HMWPE Prepared by Dynamic-Packing Injection Molding. Journal of Macromolecular Science - Physics, 2009, 48, 430-438.	1.0	2
59	Morphologies and mechanical properties of HDPE induced by small amount of high-molecular-weight polyolefin and shear stress produced by dynamic packing injection molding. Journal of Applied Polymer Science, 2008, 110, 2483-2487.	2.6	8