Elliott J Rouse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9038763/publications.pdf

Version: 2024-02-01

471061 360668 2,145 49 17 35 citations h-index g-index papers 49 49 49 1418 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How Does Ankle Mechanical Stiffness Change as a Function of Muscle Activation in Standing and During the Late Stance of Walking?. IEEE Transactions on Biomedical Engineering, 2022, 69, 1186-1193.	2.5	6
2	A Data Driven Approach for Predicting Preferred Ankle Stiffness of a Quasi-Passive Prosthesis. IEEE Robotics and Automation Letters, 2022, 7, 3467-3474.	3.3	4
3	Enhancing Voluntary Motion With Modular, Backdrivable, Powered Hip and Knee Orthoses. IEEE Robotics and Automation Letters, 2022, 7, 6155-6162.	3.3	19
4	Characterization of Open-loop Impedance Control and Efficiency in Wearable Robots. IEEE Robotics and Automation Letters, 2022, 7, 4313-4320.	3.3	4
5	Can humans perceive the metabolic benefit provided by augmentative exoskeletons?. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 26.	2.4	21
6	The role of user preference in the customized control of robotic exoskeletons. Science Robotics, 2022, 7, eabj3487.	9.9	37
7	Analysis of the Bayesian Gait-State Estimation Problem for Lower-Limb Wearable Robot Sensor Configurations. IEEE Robotics and Automation Letters, 2022, 7, 7463-7470.	3.3	3
8	Characterization and clinical implications of ankle impedance during walking in chronic stroke. Scientific Reports, 2021, 11, 16726.	1.6	9
9	Understanding patient preference in prosthetic ankle stiffness. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 128.	2.4	20
10	Biological Joint Loading and Exoskeleton Design. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 847-851.	2.1	5
11	A passive mechanism for decoupling energy storage and return in ankle–foot prostheses: A case study in recycling collision energy. Wearable Technologies, 2021, 2, .	1.6	2
12	Phase-Variable Control of a Powered Knee-Ankle Prosthesis over Continuously Varying Speeds and Inclines., 2021, 2021, 6182-6189.		23
13	Ankle Mechanical Impedance During the Stance Phase of Running. IEEE Transactions on Biomedical Engineering, 2020, 67, 1595-1603.	2.5	9
14	Design and clinical implementation of an open-source bionic leg. Nature Biomedical Engineering, 2020, 4, 941-953.	11.6	91
15	Comparing preference of ankle–foot stiffness in below-knee amputees and prosthetists. Scientific Reports, 2020, 10, 16067.	1.6	18
16	Image Transformation and CNNs: A Strategy for Encoding Human Locomotor Intent for Autonomous Wearable Robots. IEEE Robotics and Automation Letters, 2020, 5, 5440-5447.	3.3	17
17	User preference of applied torque characteristics for bilateral powered ankle exoskeletons., 2020,,.		17
18	Patient Preference in the Selection of Prosthetic Joint Stiffness. , 2020, , .		5

#	Article	IF	Citations
19	Accelerating the Estimation of Metabolic Cost Using Signal Derivatives: Implications for Optimization and Evaluation of Wearable Robots. IEEE Robotics and Automation Magazine, 2020, 27, 32-42.	2.2	7
20	Neuromotor Regulation of Ankle Stiffness is Comparable to Regulation of Joint Position and Torque at Moderate Levels. Scientific Reports, 2020, 10, 10383.	1.6	9
21	Mapping the relationships between joint stiffness, modeled muscle stiffness, and shear wave velocity. Journal of Applied Physiology, 2020, 129, 483-491.	1.2	12
22	Ankle Mechanical Impedance During Waling in Chronic Stroke: Preliminary Results., 2019, 2019, 246-251.		4
23	Damping Perception During Active Ankle and Knee Movement. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 198-206.	2.7	5
24	Transferrable Expertise From Bionic Arms to Robotic Exoskeletons: Perspectives for Stroke and Duchenne Muscular Dystrophy. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 88-96.	2.1	15
25	Empirical Characterization of a High-performance Exterior-rotor Type Brushless DC Motor and Drive. , 2019, , .		24
26	Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 135-143.	2.7	44
27	In vivo relationship between joint stiffness, joint-based estimates of muscle stiffness, and shear-wave velocity., 2018, 2018, 1468-1471.		2
28	Amputee perception of prosthetic ankle stiffness during locomotion. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 99.	2.4	46
29	The Difference Threshold of Ankle-Foot Prosthesis Stiffness for Persons with Transtibial Amputation. , 2018, , .		6
30	Design and Characterization of an Open-Source Robotic Leg Prosthesis. , 2018, , .		58
31	Stiffness Perception During Active Ankle and Knee Movement. IEEE Transactions on Biomedical Engineering, 2017, 64, 2949-2956.	2.5	22
32	Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1695-1704.	3.7	125
33	Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 823-831.	2.7	17
34	The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2375-2386.	2.7	105
35	Design of a quasi-passive ankle-foot prosthesis with biomimetic, variable stiffness. , 2017, , .		30
36	Summary of Human Ankle Mechanical Impedance During Walking. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-7.	2.2	109

#	Article	IF	CITATIONS
37	Evidence for a Time-Invariant Phase Variable in Human Ankle Control. PLoS ONE, 2014, 9, e89163.	1.1	45
38	Autonomous exoskeleton reduces metabolic cost of human walking. Journal of NeuroEngineering and Rehabilitation, 2014, $11,151.$	2.4	111
39	Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot. , 2014, 2014, 1611-7.		6
40	Autonomous exoskeleton reduces metabolic cost of walking. , 2014, 2014, 3065-8.		39
41	Clutchable series-elastic actuator: Implications for prosthetic knee design. International Journal of Robotics Research, 2014, 33, 1611-1625.	5.8	243
42	Estimation of Human Ankle Impedance During the Stance Phase of Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 870-878.	2.7	223
43	Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 80.	2.4	315
44	The Difference Between Stiffness and Quasi-Stiffness in the Context of Biomechanical Modeling. IEEE Transactions on Biomedical Engineering, 2013, 60, 562-568.	2.5	108
45	Development of a Mechatronic Platform and Validation of Methods for Estimating Ankle Stiffness During the Stance Phase of Walking. Journal of Biomechanical Engineering, 2013, 135, 81009.	0.6	45
46	Validation of methods for determining ankle stiffness during walking using the Perturberator robot. , 2012, , .		11
47	Estimation of human ankle impedance during walking using the perturberator robot. , 2012, , .		28
48	Design and validation of a platform robot for determination of ankle impedance during ambulation., 2011, 2011, 8179-82.		8
49	Development of a Model Osseo-Magnetic Link for Intuitive Rotational Control of Upper-Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 213-220.	2.7	13