Ralf Riedel

List of Publications by Citations

Source: https://exaly.com/author-pdf/903840/ralf-riedel-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 439
 13,525
 59
 99

 papers
 citations
 h-index
 g-index

 479
 15,343
 6.6
 6.64

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
439	A silicoboron carbonitride ceramic stable to 2,000˚C. <i>Nature</i> , 1996 , 382, 796-798	50.4	578
438	Synthesis of cubic silicon nitride. <i>Nature</i> , 1999 , 400, 340-342	50.4	549
437	Silazane derived ceramics and related materials. <i>Materials Science and Engineering Reports</i> , 2000 , 26, 97-199	30.9	361
436	Silicon-Based Polymer-Derived Ceramics: Synthesis Properties and Applications-A Review. <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 425-444		333
435	In situ and operando spectroscopy for assessing mechanisms of gas sensing. <i>Angewandte Chemie -</i> International Edition, 2007 , 46, 3826-48	16.4	288
434	Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. <i>Nature Materials</i> , 2003 , 2, 185	-9 7	268
433	A covalent micro/nano-composite resistant to high-temperature oxidation. <i>Nature</i> , 1995 , 374, 526-528	50.4	266
432	Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. <i>Chemical Society Reviews</i> , 2012 , 41, 5032-52	58.5	229
431	Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. <i>Journal of the American Ceramic Society</i> , 2010 , 93, no-no	3.8	209
430	Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C. <i>Journal of the American Ceramic Society</i> , 1998 , 81, 3341-3344	3.8	208
429	Polymer-derived SiCN and SiOC ceramics latructure and energetics at the nanoscale. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3826	13	207
428	High-pressure chemistry of nitride-based materials. <i>Chemical Society Reviews</i> , 2006 , 35, 987-1014	58.5	185
427	Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 3471-3482	6	159
426	Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 1349-1352	3.8	147
425	Polymer-Derived SiOC/ZrO2 Ceramic Nanocomposites with Excellent High-Temperature Stability. Journal of the American Ceramic Society, 2010 , 93, 241-250	3.8	142
424	The First Crystalline Solids in the Ternary Si-C-N System. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 603-606		139
423	Visible light photocatalysis with c-WO(3-x)/WO3田2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. <i>Journal of the American Chemical Society</i> , 2013 , 135, 446	5 7 -7 5	134

(2014-2001)

422	Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics. <i>Applied Organometallic Chemistry</i> , 2001 , 15, 820-832	3.1	132
421	29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics. <i>Chemistry of Materials</i> , 2010 , 22, 6221-6228	9.6	130
420	Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides). <i>Journal of the European Ceramic Society</i> , 2009 , 29, 2873-2883	6	125
419	Elastic Moduli and Hardness of Cubic Silicon Nitride. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 86-90	3.8	122
418	Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 913-919	6	120
417	Inorganic Solid-State Chemistry with Main Group Element Carbodiimides. <i>Chemistry of Materials</i> , 1998 , 10, 2964-2979	9.6	120
416	Progress in silicon-based non-oxide structural ceramics. <i>International Journal of Refractory Metals and Hard Materials</i> , 1997 , 15, 13-47	4.1	118
415	Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 1365-1374	6	117
414	Silicon oxycarbide glasses and glass-ceramics: All-Rounder materials for advanced structural and functional applications. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4817-4856	3.8	115
413	Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 2170-2178	3.8	109
412	Novel Silicon-Boron-Carbon-Nitrogen Materials Thermally Stable up to 2200°C. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 2179-2183	3.8	106
411	Mechanical characterization of a polysiloxane-derived SiOC glass. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 397-403	6	94
410	Polymer-derived Si-based bulk ceramics, part I: Preparation, processing and properties. <i>Journal of the European Ceramic Society</i> , 1995 , 15, 703-715	6	93
409	Oxidation Kinetics of an Amorphous Silicon Carbonitride Ceramic. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 1803-1810	3.8	92
408	The fate and role of in situ formed carbon in polymer-derived ceramics. <i>Progress in Materials Science</i> , 2020 , 109, 100623	42.2	92
407	Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 2495-2503	6	87
406	High Rate Capability of SiOC Ceramic Aerogels with Tailored Porosity as Anode Materials for Li-ion Batteries. <i>Electrochimica Acta</i> , 2015 , 157, 41-45	6.7	84
405	New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials. <i>Electrochimica Acta</i> , 2014 , 119, 78-85	6.7	83

404	Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: Low temperature thermal transformation. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1857-1866	6	81
403	Piezoresistive Effect in SiOC Ceramics for Integrated Pressure Sensors. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 920-924	3.8	79
402	Potassium melonate, K3[C6N7(NCN)3]IBH2O, and its potential use for the synthesis of graphite-like C3N4 materials. <i>New Journal of Chemistry</i> , 2005 , 29, 693	3.6	74
401	Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites. <i>Nanoscale</i> , 2014 , 6, 13678-89	7.7	7 ²
400	Structure and Electronic Transport Properties of Si-(B)-C-N Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 2260-2264	3.8	72
399	Chemical formation of ceramics. <i>Ceramics International</i> , 1996 , 22, 233-239	5.1	72
398	Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3571-3578	6	71
397	Possible superhardness of CrB4. <i>Inorganic Chemistry</i> , 2013 , 52, 540-2	5.1	71
396	Metastability of corundum-type In2O3. <i>Chemistry - A European Journal</i> , 2008 , 14, 3306-10	4.8	70
395	Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability. <i>Advanced Functional Materials</i> , 2014 , 24, 4097-4104	15.6	69
394	Nanodomain Structure of Carbon-Rich Silicon Carbonitride Polymer-Derived Ceramics. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1169-1175	3.8	69
393	Carbon-rich SiOC anodes for lithium-ion batteries: Part I. Influence of material UV-pre-treatment on high power properties. <i>Solid State Ionics</i> , 2012 , 225, 522-526	3.3	67
392	A novel carbon material derived from pyridineBorane. <i>Advanced Materials</i> , 1991 , 3, 551-552	24	66
391	Nanoporous Silicon Oxycarbonitride Ceramics Derived from Polysilazanes In situ Modified with Nickel Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 4112-4123	9.6	65
390	Single-source-precursor derived RGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. <i>Acta Materialia</i> , 2017 , 130, 83-93	8.4	64
390 389		8.4 5.1	64
	electromagnetic shielding effectiveness. <i>Acta Materialia</i> , 2017 , 130, 83-93 Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic	,	

386	Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 3235-3243	6	63
385	SiCN/C-ceramic composite as anode material for lithium ion batteries. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 3903-3908	6	63
384	Introduction to the Special Topical Issue on Ultrahigh-Temperature Polymer-Derived Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 2158-2159	3.8	62
383	Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods. <i>Electrochimica Acta</i> , 2014 , 115, 665-670	6.7	60
382	Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking. <i>Solid State Ionics</i> , 2012 , 225, 527-531	3.3	60
381	Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 6412-6418	8.9	60
380	Boron-modified Inorganic Polymers B recursors for the Synthesis of Multicomponent Ceramics. <i>Applied Organometallic Chemistry</i> , 1996 , 10, 241-256	3.1	59
379	Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics. <i>Electrochimica Acta</i> , 2010 , 56, 174-182	6.7	57
378	Silicon carbonitride ceramics derived from polysilazanes Part I. Investigation of compositional and structural properties. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 1355-1364	6	57
377	Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries. <i>ACS Nano</i> , 2017 , 11, 11409-11416	16.7	56
376	Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. <i>Applied Catalysis B: Environmental</i> , 2012 , 115-116, 303-313	21.8	56
375	Polymer Derived Si B¤N Ceramics: 30 Years of Research. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800360	3.5	55
374	Crystallization behaviour of amorphous silicon nitride. <i>Journal of the European Ceramic Society</i> , 1991 , 7, 21-25	6	55
373	Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunable micro- and mesoporosity. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 477-484	6	52
372	Electrochemical performance of DVB-modified SiOC and SiCN polymer-derived negative electrodes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 106, 101-108	6.7	52
371	Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. <i>Solid State Ionics</i> , 2014 , 260, 94-100	3.3	51
370	Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization. <i>Small</i> , 2011 , 7, 970-8	11	51
369	Preparation of Non-Oxidic Silicon Ceramics by an Anhydrous Sol G el Process. <i>Angewandte Chemie</i> International Edition in English, 1997 , 36, 384-386		51

368	Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part I: Phase and Microstructure Evolution During the Ceramization Process. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1774	3.8	50
367	Synthesis and thermally induced ceramization of a non-oxidic poly(methylsilsesquicarbodi-imide) gel. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 833-841	3.1	50
366	Polymer-derived mesoporous SiOC/ZnO nanocomposite for the purification of water contaminated with organic dyes. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 330-338	5.3	49
365	Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors?. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12239	13	49
364	High-Temperature Raman Spectroscopy of Nano-Crystalline Carbon in Silicon Oxycarbide. <i>Materials</i> , 2018 , 11,	3.5	48
363	Enthalpy of Formation of Carbon-Rich Polymer-Derived Amorphous SiCN Ceramics. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3349-3354	3.8	48
362	Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. <i>Electrochimica Acta</i> , 2016 , 216, 196-202	6.7	48
361	Polymer-Derived Ultra-High Temperature Ceramics (UHTCs) and Related Materials. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900269	3.5	47
360	Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation acase study. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1873-1881	6	47
359	Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics. <i>Inorganic Chemistry</i> , 2009 , 48, 10078-83	5.1	47
358	Al2O3BiC composites prepared by warm pressing and sintering of an organosilicon polymer-coated alumina powder. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 2385-2392	6	47
357	Processing and magnetic properties of metal-containing SiCN ceramic micro- and nano-composites. Journal of Materials Science, 2008, 43, 4042-4049	4.3	47
356	High-Temperature Creep Behavior of Dense SiOC-Based Ceramic Nanocomposites: Microstructural and Phase Composition Effects. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 272-280	3.8	46
355	Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. <i>Journal of Power Sources</i> , 2014 , 269, 164-172	8.9	45
354	Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 244, 80-86	8.9	45
353	Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 236, 224-229	8.9	45
352	Luminescence of heat-treated silicon-based polymers: promising materials for LED applications. Journal of Materials Science, 2008 , 43, 5790-5796	4.3	45
351	Polymer-Derived SiBCN Ceramic and their Potential Application for High Temperature Membranes Dedicated to Prof. DrIng. Dr.h.c. Hartmut Fuess on the occasion of his 65th birthday. <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 524-528		45

350	Microwave Absorption of SiC/HfCxN1½/C Ceramic Nanocomposites with HfCxN1½-Carbon CoreBhell Particles. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2655-2663	3.8	44	
349	Single-source-precursor synthesis of high temperature stable SiC/C/Fe nanocomposites from a processable hyperbranched polyferrocenylcarbosilane with high ceramic yield. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1057-1067	7.1	43	
348	Single-source-precursor synthesis of soft magnetic Fe3Si- and Fe5Si3-containing SiOC ceramic nanocomposites. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 2465-2472	6	43	
347	Hard silicon carbonitride films obtained by RF-plasma-enhanced chemical vapour deposition using the single-source precursor bis(trimethylsilyl)carbodiimide. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 1325-1335	6	43	
346	Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor Deposition. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 1331-1334	3.8	43	
345	Effect of Precursor on Speciation and Nanostructure of SiBCN Polymer-Derived Ceramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1651-1659	3.8	42	
344	Nanocubes or Nanorhombohedra? Unusual Crystal Shapes of Corundum-Type Indium Oxide. Journal of Physical Chemistry C, 2008 , 112, 9209-9213	3.8	42	
343	Synthese und Struktur des ersten oligomeren cyclischen Dimethylsilyl-substituierten Carbodiimids. <i>Chemische Berichte</i> , 1993 , 126, 2569-2571		42	
342	Fabrication of lanthanum and nitrogen & o-doped SrTiO3 TiO2 heterostructured macroporous monolithic materials for photocatalytic degradation of organic dyes under visible light. <i>Journal of Alloys and Compounds</i> , 2017 , 699, 144-150	5.7	41	
341	Nanoindentation of a Polymer-Derived Amorphous Silicon Carbonitride Ceramic. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 1164-1166	3.8	41	
340	Synthesis of silyl substituted organoboranes by hydroboration of vinylsilanes. <i>Polyhedron</i> , 2000 , 19, 323	3-23 3 0	41	
339	High pressure synthesis of marcasite-type rhodium pernitride. <i>Inorganic Chemistry</i> , 2014 , 53, 697-9	5.1	40	
338	Orthorhombic In2O3: a metastable polymorph of indium sesquioxide. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6531-5	16.4	40	
337	Polymer-derived mulliteBiC-based nanocomposites. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 3079-3090	6	40	
336	Thermodynamic Control of Phase Composition and Crystallization of Metal-Modified Silicon Oxycarbides. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1899-1903	3.8	39	
335	Dense silicon carbonitride ceramics by pyrolysis of cross-linked and warm pressed polysilazane powders. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 2789-2796	6	39	
334	New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics. <i>Nanomaterials</i> , 2015 , 5, 233-245	5.4	38	
333	Influence of the PVD sputtering method on structural characteristics of SiCN-coatings Comparison of RF, DC and HiPIMS sputtering and target configurations. Surface and Coatings Technology 2011, 205, S119-S123	4.4	38	

332	Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part II: Stability Toward Decomposition and Microstructure Evolution at T>>1000°C. Journal of the American Ceramic Society, 2010 , 93, 1783	3.8	38	
331	Finely Tuned SnO Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties. <i>ACS Applied Materials & Company Interfaces</i> , 2018 , 10, 10173-10184	9.5	36	
330	High-Pressure Synthesis, Electron Energy-Loss Spectroscopy Investigations, and Single Crystal Structure Determination of a Spinel-Type Gallium Oxonitride Ga2.79?0.21(O3.05N0.76?0.19). <i>Chemistry of Materials</i> , 2009 , 21, 2101-2107	9.6	36	
329	The Thermal Conductivity of Polymer-Derived Amorphous SiDC Compounds and Nano-Composites. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 281-285	3.8	36	
328	Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures. <i>Materials</i> , 2018 , 11,	3.5	35	
327	Single-source-precursor synthesis and electromagnetic properties of novel RGOBiCN ceramic nanocomposites. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7950-7960	7.1	35	
326	Solid-state NMR investigations of the polymer route to SiBCN ceramics. <i>Canadian Journal of Chemistry</i> , 2003 , 81, 1359-1369	0.9	35	
325	Carbon substitution for oxygen in silicates in planetary interiors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 15904-7	11.5	34	
324	Fabrication of silicon oxycarbide-based microcomponents via photolithographic and soft lithography approaches. <i>Sensors and Actuators A: Physical</i> , 2011 , 169, 242-249	3.9	34	
323	Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2977-2983	3.8	34	
322	NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N2 and CO2 adsorption and small angle X-ray scattering study. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 805-818	13	33	
321	In-Situ Carbon Content Adjustment in Polysilazane Derived Amorphous SiCN Bulk Ceramics. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 1911-1921	6	33	
320	Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. <i>RSC Advances</i> , 2016 , 6, 104597-104607	3.7	32	
319	Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions. <i>International Journal of Materials Research</i> , 2012 , 103, 31-39	0.5	32	
318	High-pressure high-temperature synthesis of Rh2O3-II-type In2O3 polymorph. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 269-271	2.5	32	
317	Synthesis and Characterization of Novel Non-Oxide Sol-Gel Derived Mesoporous Amorphous Si-C-N Membranes. <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 567-570		32	
316	B/C/N Materials and B4C Synthesized by a Non-Oxide Sol © el Process. <i>Chemistry of Materials</i> , 2003 , 15, 755-764	9.6	32	
315	High-temperature oxidation behavior of polymer-derived SiHfBCN ceramic nanocomposites. Journal of the European Ceramic Society, 2016 , 36, 3021-3028	6	31	

(2015-2009)

314	Synthesis, Structures, and Properties of Bulk Si(O)C Ceramics from Polycarbosilane. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2175-2181	3.8	31	
313	In-situ- und Operando-Spektroskopie zur Untersuchung von Mechanismen der Gaserkennung. <i>Angewandte Chemie</i> , 2007 , 119, 3900-3923	3.6	31	
312	Thermal Decomposition of Poly(methylsilsesquicarbodiimide) to Amorphous Si [I] Ceramics. <i>Chemistry of Materials</i> , 1999 , 11, 412-420	9.6	31	
311	Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2859-2867	9.1	30	
310	Spinel sialons. Angewandte Chemie - International Edition, 2002, 41, 789-93	16.4	30	
309	Synthesis of Nanocrystalline Zr3N4 and Hf3N4 Powders from Metal Dialkylamides. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2005 , 631, 1449-1455	1.3	30	
308	Silylated carbodiimides in molecular and extended structures. <i>Physical Review B</i> , 1999 , 60, 3126-3139	3.3	30	
307	Fabrication of nitrogen-doped TiO2 monolith with well-defined macroporous and bicrystalline framework and its photocatalytic performance under visible light. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 809-816	6	29	
306	Multilayer Amorphous-Si-B-C-N/EAl2O3/EAl2O3 Membranes for Hydrogen Purification. <i>Advanced Engineering Materials</i> , 2010 , 12, 522-528	3.5	29	
305	Tuning of the Rheological Properties and Thermal Behavior of Boron-Containing Polysiloxanes. <i>Chemistry of Materials</i> , 2008 , 20, 3601-3608	9.6	29	
304	Equation of state of cubic hafnium(IV) nitride having Th3P4 -type structure. <i>Solid State Communications</i> , 2006 , 139, 255-258	1.6	29	
303	Facile solgel synthesis of reduced graphene oxide/silica nanocomposites. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 2923-2930	6	28	
302	Preparation and hydrothermal corrosion behavior of Cf/SiCN and Cf/SiHfBCN ceramic matrix composites. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3329-3337	6	28	
301	Lithium containing silazanes as precursors for SiCN:Li ceramics potential material for electrochemical applications. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 3897-3901	6	28	
300	A Sol © el Route to B4C. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1698-1700	16.4	27	
299	An anhydrous solgel system derived from methyldichlorosilane. <i>Applied Organometallic Chemistry</i> , 1999 , 13, 495-499	3.1	27	
298	Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. <i>Solid State Ionics</i> , 2014 , 262, 22-24	3.3	26	
297	A facile preparation of dual-phase nitrogen-doped TiO2BrTiO3 macroporous monolithic photocatalyst for organic dye photodegradation under visible light. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 1815-1821	6	26	

296	Properties of SiCN coatings for high temperature applications © Comparison of RF-, DC- and HPPMS-sputtering. <i>Surface and Coatings Technology</i> , 2010 , 205, S21-S27	4.4	26
295	Viscoelastic Properties of Novel Silicon Carbodiimide Gels. <i>Macromolecules</i> , 2000 , 33, 3404-3408	5.5	26
294	Crystallization kinetics of polysilazane-derived amorphous silicon nitride. <i>Journal of Crystal Growth</i> , 1994 , 137, 452-456	1.6	26
293	Laser ablation behavior of Cf/SiHfBCN ceramic matrix composites. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3761-3768	6	26
292	High-ceramic-yield precursor to SiC-based ceramic: A hyperbranched polytitaniumcarbosilane bearing self-catalyzing units. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 851-858	6	25
291	SiC/HfyTa1IJCxN1IJ/C ceramic nanocomposites with HfyTa1IJCxN1II-carbon coreIIhell nanostructure and the influence of the carbon-shell thickness on electrical properties. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 855-864	7.1	25
290	Decomposition-Coarsening Model of SiOC/HfO2 Ceramic Nanocomposites Upon Isothermal Anneal at 1300°C. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2290-2297	3.8	25
289	Effect of ambient atmosphere on crosslinking of polysilazanes. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 794-802	2.9	25
288	High-Pressure Synthesis of a Gallium Oxonitride with a Spinel-Type Structure. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 2005 , 60, 831-836	1	25
287	Synthesis and In Vitro Activity Assessment of Novel Silicon Oxycarbide-Based Bioactive Glasses. <i>Materials</i> , 2016 , 9,	3.5	25
286	In situ formation of tungsten oxycarbide, tungsten carbide and tungsten nitride nanoparticles in micro- and mesoporous polymer-derived ceramics. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10454	13	24
285	Hybrid organotin and tin oxide-based thin films processed from alkynylorganotins: synthesis, characterization, and gas sensing properties. <i>ACS Applied Materials & Design Communication</i> , and gas sensing properties. <i>ACS Applied Materials & Design Communication</i> , and gas sensing properties. <i>ACS Applied Materials & Design Communication</i> , and gas sensing properties. <i>ACS Applied Materials & Design Communication</i> , and gas sensing properties.	1 ^{9.5}	24
284	High-temperature stability and saturation magnetization of superparamagnetic nickel nanoparticles in microporous polysilazane-derived ceramics and their gas permeation properties. <i>ACS Applied Materials & Description</i> (2014), 6, 12270-8	9.5	24
283	Surfactant-free self-assembly route to hollow In2O3 microspheres. Chemical Communications, 2009, 27	4 ჳ. �	24
282	Synthesis and characterization of alkylene-bridged silsesquicarbodiimide hybrid xerogels. <i>Journal of Organometallic Chemistry</i> , 2003 , 686, 127-133	2.3	24
281	The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 282, 409-415	8.9	23
280	High-Temperature Creep Behavior of SiOC Glass-Ceramics: Influence of Network Carbon Versus Segregated Carbon. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3935-3942	3.8	23
279	Characterization of AlN powder produced by the reaction of AlCl3 with hexamethyldisilazane. Journal of Materials Science Letters, 1990 , 9, 222-224		23

(2011-2019)

278	Synergistic effect of g-C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation. <i>Renewable Energy</i> , 2019 , 138, 434-444	8.1	22
277	ZrCIIrB2BiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield. <i>Journal of Advanced Ceramics</i> , 2019 , 8, 112-120	10.7	22
276	Synthesis and high-temperature evolution of polysilylcarbodiimide-derived SiCN ceramic coatings. Journal of the European Ceramic Society, 2015 , 35, 3771-3780	6	22
275	High-temperature creep behavior of a SiOC glass ceramic free of segregated carbon. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3747-3753	6	22
274	Single-source-precursor synthesis of novel V8C7/SiC(O)-based ceramic nanocomposites. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3553-3563	6	22
273	Effect of boron incorporation on the phase composition and high-temperature behavior of polymer-derived silicon carbide. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 967-977	6	22
272	Amorphous SiBCO ceramics derived from novel polymeric precursors. <i>Comptes Rendus Chimie</i> , 2004 , 7, 463-469	2.7	22
271	From Molecules to Materials ? A Novel Route for the Synthesis of Advanced Ceramics. <i>Die Naturwissenschaften</i> , 1995 , 82, 12-20	2	22
270	Characterization and application of a novel low viscosity polysilazane for the manufacture of C- and SiC-fiber reinforced SiCN ceramic matrix composites by PIP process. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 212-221	6	22
269	Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples. <i>Journal of Materials Science and Technology</i> , 2022 , 96, 31-68	9.1	22
268	Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance. <i>Journal of Power Sources</i> , 2014 , 253, 342-348	8.9	21
267	Effect of demixing and coarsening on the energetics of poly(boro)silazane-derived amorphous Si [B]ICN ceramics. <i>Scripta Materialia</i> , 2013 , 69, 347-350	5.6	21
266	Texture and micro-nanostructure of porous silicon oxycarbide glasses prepared from hybrid materials aged in different solvents. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 1791-1801	6	21
265	Synthesis and Structure of Three-Dimensionally Ordered Graphitelike BC2N Ternary Crystals. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 279-82	3.8	21
264	Preparation of dense SiHf(B)CN-based ceramic nanocomposites via rapid spark plasma sintering. Journal of the European Ceramic Society, 2017 , 37, 5157-5165	6	20
263	Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling. <i>Advanced Powder Technology</i> , 2018 , 29, 1742-1748	4.6	20
262	Synthesis and high-temperature evolution of single-phase amorphous SiHfN ceramics. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2007-2015	6	20
261	Low-temperature H2 sensing in self-assembled organotin thin films. <i>Chemical Communications</i> , 2011 , 47, 1464-6	5.8	20

2 60	Influence of nano-aluminum filler on the microstructure of SiOC ceramics. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 1779-1789	6	20
259	Significant improvement of the short-term high-temperature oxidation resistance of dense monolithic HfC/SiC ceramic nanocomposites upon incorporation of Ta. <i>Corrosion Science</i> , 2018 , 145, 191	-198	20
258	SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A156-A162	3.9	19
257	Isotropic Negative Thermal Expansion in Esi(NCN)2 and Its Origin. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 526-531	3.8	19
256	The influence of post-sintering HIP on the microstructure, hardness, and indentation fracture toughness of polymer-derived Al2O3BiC nanocomposites. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 1237-1245	6	19
255	Laser ablation behavior of SiHfC-based ceramics prepared from a single-source precursor: Effects of Hf-incorporation into SiC. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2018-2027	6	18
254	Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg-SiC nanocomposites produced by mechanical milling and hot extrusion. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 738, 264-272	5.3	18
253	Role of single-source-precursor structure on microstructure and electromagnetic properties of CNTs-SiCN nanocomposites. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 4649-4660	3.8	17
252	Light-weight and highly flexible TaC modified PyC fiber fabrics derived from cotton fiber textile with excellent electromagnetic shielding effectiveness. <i>Chemical Engineering Journal</i> , 2020 , 387, 12408	5 ^{14.7}	17
251	High-temperature piezoresistive C / SiOC sensors. <i>Journal of Sensors and Sensor Systems</i> , 2015 , 4, 133-1.	3<u>6</u>. 6	17
250	Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics245-320		17
249	A study on the thermal conversion of scheelite-type ABO4 into perovskite-type AB(O,N)3. <i>Dalton Transactions</i> , 2015 , 44, 8238-46	4.3	16
248	Lithium intercalation into SiCN/disordered carbon composite. Part 1: influence of initial carbon porosity on cycling performance/capacity. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 2763-2769	2.6	16
247	Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles. <i>Journal of Advanced Ceramics</i> , 2020 , 9, 320-328	10.7	16
246	Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. <i>Carbon</i> , 2020 , 163, 254-264	10.4	16
245	In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2 O3 and synthesis of corundum-type and orthorhombic In2 O3 polymorphs. <i>High Pressure Research</i> , 2013 , 33, 697-711	1.6	16
244	Thermal stability, morphology and electronic band gap of Zn(NCN). Solid State Sciences, 2013, 23, 50-57	3.4	16
243	Solid-Solution Effects on the High-Temperature Oxidation Behavior of Polymer-Derived (Hf,Ta)C/SiC and (Hf,Ti)C/SiC Ceramic Nanocomposites. <i>Advanced Engineering Materials</i> , 2019 , 21, 18008	379	16

(2015-2015)

242	High-Pressure Synthesis of Novel Boron Oxynitride B6N4O3 with Sphalerite Type Structure. <i>Chemistry of Materials</i> , 2015 , 27, 5907-5914	9.6	15	
241	Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1☑/C ceramic nanocomposites. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10683-10693	7.1	15	
240	Surface-initiated anionic polymerization of [1]silaferrocenophanes for the preparation of colloidal preceramic materials. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 597-603	4.8	15	
239	Nichtoxidische Silicium-Keramiken Ber einen wasserfreien Sol-Gel-Proze[] <i>Angewandte Chemie</i> , 1997 , 109, 371-373	3.6	15	
238	Atomic-scale assessment of the crystallization onset in silicon carbonitride. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3355-3362	6	14	
237	The influence of pyrolysis temperature on the electrochemical behavior of porous carbon-rich SiCN polymer-derived ceramics. <i>Solid State Ionics</i> , 2018 , 315, 59-64	3.3	14	
236	Preparation and characterization of macroporous TiO2BrTiO3 heterostructured monolithic photocatalyst. <i>Materials Letters</i> , 2014 , 116, 353-355	3.3	14	
235	Sinterability of the oxynitride LaTiO2N with perovskite-type structure. <i>Journal of Alloys and Compounds</i> , 2014 , 586, 567-573	5.7	14	
234	Precursor-Derived Ceramics 2013, 1025-1101		14	
233	An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route. <i>Ceramics International</i> , 2018 , 44, 8476-8483	5.1	13	
232	Silicon-Containing Polyimide-Based Polymers with High Temperature Stability. <i>Chemistry of Materials</i> , 2010 , 22, 3823-3825	9.6	13	
231	Al2O3BiC composites prepared by infiltration of pre-sintered alumina with a poly(allyl)carbosilane. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 111-119	6	13	
230	Elastic moduli and hardness of c-Zr2.86(N0.88O0.12)4 having Th3P4-type structure. <i>Applied Physics Letters</i> , 2007 , 90, 191910	3.4	13	
229	Elastic properties and fracture toughness of SiOC-based glass-ceramic nanocomposites. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 491-499	3.8	13	
228	Wet oxidation behavior of SiC/(SiC- SiBCN)x composites prepared by CVI combined with PIOP process. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6239-6255	3.8	12	
227	Synthesis and in vitro bioactivity assessment of injectable bioglassBrganic pastes for bone tissue repair. <i>Ceramics International</i> , 2015 , 41, 9373-9382	5.1	12	
226	Influence of the architecture of dendritic-like polycarbosilanes on the ceramic yield. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 1161-1171	6	12	
225	Evolution of the local structure at Hf sites in SiHfOC upon ceramization of a hafnium-alkoxide-modified polysilsesquioxane: A perturbed angular correlation study. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 29-35	6	12	

224	Degradation mechanisms of a self-healing SiC(f)/BN(i)/[SiC-B4C](m) composite at high temperature under different oxidizing atmospheres. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 3804-3813	6	12
223	Post-mortem analysis of calendar aged large-format lithium-ion cells: Investigation of the solid electrolyte interphase. <i>Journal of Power Sources</i> , 2019 , 443, 227243	8.9	12
222	Heavy metals in red crabs, Chaceon quinquedens, from the Gulf of Mexico. <i>Marine Pollution Bulletin</i> , 2015 , 101, 845-51	6.7	12
221	Carbon Mobility in SiOC/HfO2 Ceramic Nanocomposites. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2058-2060	3.8	12
220	Photoluminescence of as-synthesized and heat-treated phenyl-containing polysilylcarbodiimides: role of crosslinking and free carbon formation in polymer-derived ceramics. <i>Applied Organometallic Chemistry</i> , 2013 , 27, 630-638	3.1	12
219	Anion ordering in spinel-type gallium oxonitride. <i>Physical Review B</i> , 2011 , 84,	3.3	12
218	Polymer-Derived Lightweight SiBCN Ceramic Nanofibers with High Microwave Absorption Performance. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	12
217	7Li NMR studies of lithium ion dynamics in polymer-derived silicon oxycarbide ceramics. <i>Solid State Ionics</i> , 2016 , 287, 28-35	3.3	11
216	Active metal electrode-oxide interface in gas sensor operation probed by in situ and time-resolved X-ray spectroscopy. <i>ChemPhysChem</i> , 2010 , 11, 79-82	3.2	11
215	Mechanism of Gas Separation through Amorphous Silicon Oxycarbide Membranes . <i>Advanced Engineering Materials</i> , 2016 , 18, 721-727	3.5	11
214	Review: Silicon oxycarbide based materials for biomedical applications. <i>Applied Materials Today</i> , 2020 , 18, 100482	6.6	11
213	Self-healing enhancing tensile creep of 2D-satin weave SiC/(SiC-SiBCN)x composites in wet oxygen environment. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 3509-3519	6	11
212	The influence of the anode overhang effect on the capacity of lithium-ion cells (b) 0D-modeling approach. <i>Journal of Energy Storage</i> , 2020 , 29, 101344	7.8	11
211	Low temperature synthesis of nanocrystalline MnIn2O4 spinel. <i>Dalton Transactions</i> , 2012 , 41, 3374-6	4.3	10
21 0	Sinter-HIP of polymer-derived Al2O3BiC composites with high SiC contents. <i>Materials Letters</i> , 2011 , 65, 2462-2465	3.3	10
209	High-pressure high-temperature synthesis and structure of EMgSiN2. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 196-198	2.5	10
208	Phase Transitions and Material Synthesis using the CO2-Laser Heating Technique in a Diamond Cell41-	65	10
207	Silicon Nitride Based Hard Materials749-801		10

206	From molecules to materials has novel route for the synthesis of advanced ceramics. <i>Die Naturwissenschaften</i> , 1995 , 82, 12-20	2	10
205	Effect of Alumina Incorporation on the Surface Mineralization and Degradation of a Bioactive Glass (CaO-MgO-SiOENaD-PDECaF) Glycerol Paste. <i>Materials</i> , 2017 , 10,	3.5	9
204	Ultramicroporous silicon nitride ceramics for CO2 capture. <i>Journal of Materials Research</i> , 2015 , 30, 2958	3- 2.9 66	9
203	Polymer Processing of Ceramics 2012 , 235-270		9
202	Influence of diamond particles content on the critical load for crack initiation and fracture toughness of SiOC glassdiamond composites. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 847-85	8 6	9
201	Correlation Between Intrinsic Microstructure and Piezoresistivity in a SiOC Polymer-Derived Ceramic. <i>Journal of the American Ceramic Society</i> , 2011 , 95, n/a-n/a	3.8	9
200	Synthesis and Characterization of AlBiC Nanocomposites Produced by Mechanical Milling and Sintering. <i>Advanced Composite Materials</i> , 2011 , 20, 13-27	2.8	9
199	Preparation of spinel ultrafiltration membranes. Advanced Materials, 1992, 4, 662-665	24	9
198	Single-source-precursor synthesis and high-temperature evolution of a boron-containing SiC/HfC ceramic nano/micro composite. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 3002-3012	6	9
197	Ceramic synthesis from condensed phases. <i>ChemTexts</i> , 2016 , 2, 1	2.2	9
197 196	Ceramic synthesis from condensed phases. <i>ChemTexts</i> , 2016 , 2, 1 Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521	2.2 5.1	9
	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic.		
196	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521 Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable	5.1	9
196 195	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521 Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50469 Perovskite Sr1 Ba x W1 Ta y (O,N)3: synthesis by thermal ammonolysis and photocatalytic	5.1 2.9	9
196 195 194	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521 Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50469 Perovskite Sr1 Ba x W1 Ta y (O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light. <i>Materials for Renewable and Sustainable Energy</i> , 2017 , 6, 1 Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions.	5.1 2.9 4.7	9 9 8
196 195 194	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521 Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50469 Perovskite Sr1 Bax W1 Tay (O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light. <i>Materials for Renewable and Sustainable Energy</i> , 2017 , 6, 1 Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions. <i>Journal of Solid State Chemistry</i> , 2016 , 241, 54-63 Silicon oxycarbonitrides synthesized by ammonia-assisted thermolysis route from polymers: A total X-ray scattering, solid-state NMR, and TEM structural study. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 979-989	5.1 2.9 4.7 3.3 6	9 9 8 8
196 195 194 193	Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. <i>Ceramics International</i> , 2019 , 45, 9515-9521 Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50469 Perovskite Sri Baa x Wi Tay (O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light. <i>Materials for Renewable and Sustainable Energy</i> , 2017 , 6, 1 Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions. <i>Journal of Solid State Chemistry</i> , 2016 , 241, 54-63 Silicon oxycarbonitrides synthesized by ammonia-assisted thermolysis route from polymers: A total X-ray scattering, solid-state NMR, and TEM structural study. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 979-989 Lithium intercalation into disordered carbon/SiCN composite. Part 2: Raman spectroscopy and 7Li	5.1 2.9 4.7 3.3 6	9 9 8 8 8 8

188	Development of Graded Low Friction SiCN Coatings with Extended High Temperature Stability above 1 200 °C. <i>Plasma Processes and Polymers</i> , 2009 , 6, S649-S654	3.4	8
187	Thermal analysis study of polymer-to-ceramic conversion of organosilicon precursors. <i>Journal of Mining and Metallurgy, Section B: Metallurgy</i> , 2008 , 44, 35-38	1	8
186	A Novel High-Pressure Tin Oxynitride Sn N O. <i>Chemistry - A European Journal</i> , 2020 , 26, 2187-2194	4.8	8
185	Effect of the Content and Ordering of the sp Free Carbon Phase on the Charge Carrier Transport in Polymer-Derived Silicon Oxycarbides. <i>Molecules</i> , 2020 , 25,	4.8	8
184	Piezoresistive carbon-containing ceramic nanocomposites [A review. <i>Open Ceramics</i> , 2021 , 5, 100057	3.3	8
183	SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance. <i>Carbon</i> , 2021 , 179, 180-189	10.4	8
182	One-pot synthesis of a C/SiFeN(O)-based ceramic paper with in-situ generated hierarchical micro/nano-morphology. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 5193-5203	6	7
181	Effect of composition and high-temperature annealing on the local deformation behavior of silicon oxycarbides. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2287-2296	6	7
180	High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air. <i>Corrosion Science</i> , 2020 , 175, 108866	6.8	7
179	Polymer-derived porous Bi2WO6/SiC(O) ceramic nanocomposites with high photodegradation efficiency towards Rhodamine B. <i>Ceramics International</i> , 2018 , 44, 8562-8569	5.1	7
178	Prevention of Solid Electrolyte Interphase Damaging on Silicon by Using Polymer Derived SiCN Ceramics. <i>ECS Transactions</i> , 2011 , 35, 37-44	1	7
177	Synthesemethoden filkeramische Materialien. Hochtechnologiewerkstoffe. <i>Chemie in Unserer Zeit</i> , 2010 , 44, 208-227	0.2	7
176	Phase evolution of SiOC-based ceramic nanocomposites derived from a polymethylsiloxane modified by Hf- and Ti-alkoxides. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 1436-1445	3.8	7
175	Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. <i>Journal of Materials Science</i> , 2016 , 51, 6051-6061	4.3	7
174	Nowotny phase Mo3+2xSi3C0.6 dispersed in a porous SiC/C matrix: A novel catalyst for hydrogen evolution reaction. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 508-519	3.8	7
173	Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon. <i>Solid State Ionics</i> , 2017 , 302, 66-71	3.3	6
172	Apatite Forming Ability and Dissolution Behavior of Boron- and Calcium-Modified Silicon Oxycarbides in Comparison to Silicate Bioactive Glass. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5337-5347	5.5	6
171	Dielectric Properties and Electromagnetic Wave Absorbing Performance of Single-Source-Precursor Synthesized MoSiC/SiC/C Nanocomposites with an In Situ Formed Nowotny Phase. <i>ACS Applied Materials & Dietropy</i> (12, 16912-16921)	9.5	6

170	Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of MgBiC nanocomposites. <i>Journal of Materials Science</i> , 2020 , 55, 10582-10592	4.3	6
169	Significant improvement of high-temperature oxidation resistance of HfC/SiC ceramic nanocomposites with the incorporation of a small amount of boron. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 3499-3508	6	6
168	Reactive Element Effect Applied by Alloying and SiHfBCN Coating on the Oxidation of Pure Chromium. <i>Oxidation of Metals</i> , 2019 , 92, 281-302	1.6	6
167	Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling. <i>International Journal of Materials Research</i> , 2017 , 108, 920-932	0.5	6
166	Monoclinic Zirconia Bodies by Thermoplastic Ceramic Extrusion. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 358-364	3.8	6
165	Polymer-Derived Al2O3-SiC Nanocomposites: Preparation Route vs. Microstructure. <i>Key Engineering Materials</i> , 2005 , 290, 121-128	0.4	6
164	Effect of Ca and B incorporation into silicon oxycarbide on its microstructure and phase composition. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 7645-7655	3.8	5
163	Discovery of Ternary Silicon Titanium Nitride with Spinel-Type Structure. <i>Scientific Reports</i> , 2020 , 10, 7372	4.9	5
162	The improvement in thermal and mechanical properties of TiB2 modified adhesive through the polymer-derived-ceramic route. <i>Ceramics International</i> , 2018 , 44, 19505-19511	5.1	5
161	Synthesis and characterization of luminescent properties of ceramics derived from polysilylcarbodiimides. <i>Journal of the Ceramic Society of Japan</i> , 2014 , 122, 895-901	1	5
160	Development and Characterization of Mg-SiC Nanocomposite Powders Synthesized by Mechanical Milling. <i>Key Engineering Materials</i> , 2017 , 742, 165-172	0.4	5
159	AES investigations on starting powders for high performance ceramics. <i>Mikrochimica Acta</i> , 1990 , 101, 207-218	5.8	5
158	In situ growth of B4C nanowires on activated carbon felt to improve microwave absorption performance. <i>Applied Physics Letters</i> , 2020 , 116, 203101	3.4	5
157	Single-source-precursor synthesis and high-temperature evolution of novel mesoporous SiVN(O)-based ceramic nanocomposites. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 6280-6287	6	5
156	Facile Preparative Access to Bioactive Silicon Oxycarbides with Tunable Porosity. <i>Materials</i> , 2019 , 12,	3.5	5
155	Electrochemical study of NiO nanosheets: toward the understanding of capacity fading. <i>Journal of Materials Science</i> , 2017 , 52, 6498-6505	4.3	4
154	Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study. <i>Advanced Engineering Materials</i> , 2019 , 21, 1800596	3.5	4
153	High-pressure high-temperature behavior of polymer derived amorphous B-C-N. <i>Journal of Physics:</i> Conference Series, 2014 , 500, 182004	0.3	4

152	Electronic structure and band gap of oxygen bearing c-Zr3N4 and of c-Hf3N4 by soft X-ray spectroscopy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 835-842	1.6	4
151	Effect of matrix gas phase deposition cycles on the microstructure and properties of 2D C/SiC. <i>Composites Science and Technology</i> , 2014 , 90, 117-122	8.6	4
150	Powder Compaction by Dry Pressing 2012 , 1-37		4
149	Phase segregation in Mn-doped In2O3: in situ high-pressure high-temperature synchrotron studies in multi-anvil assemblies. <i>RSC Advances</i> , 2013 , 3, 5357	3.7	4
148	Characterization of the Materials Synthesized by High Pressure-High Temperature Treatment of a Polymer Derived t-BCN Ceramic. <i>Materials</i> , 2011 , 4, 2061-2072	3.5	4
147	ORGANICINORGANIC MATERIALS FOR FAST CHARGING DISCHARGING PROCESSES IN ENERGY STORAGE DEVICES. <i>Functional Materials Letters</i> , 2011 , 04, 193-197	1.2	4
146	trans-Bis(acetato-D)bis-(2-amino-ethanol-[2)N,O)nickel(II). <i>Acta Crystallographica Section E:</i> Structure Reports Online, 2012 , 68, m567-8		4
145	Electrochemical Li Storage Properties of Carbon-Rich BITN Ceramics. <i>Journal of Carbon Research</i> , 2016 , 2, 9	3.3	4
144	Long-term oxidation behavior of C/SiC-SiBCN composites in wet oxygen environment. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 1132-1141	6	4
143	Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 3030-3036	6	4
142	Electromagnetic shielding performance of SiC/graphitic carbon-SiCN porous ceramic nanocomposites derived from catalyst assisted single-source-precursors. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 4806-4814	6	4
141	An electrically conductive SiBCN film prepared via polymer-derived ceramic and chemical vapor deposition methods. <i>Sensors and Actuators A: Physical</i> , 2021 , 330, 112824	3.9	4
140	Charting stability space. <i>Nature Materials</i> , 2019 , 18, 664-665	27	3
139	Synthesis and rapid sintering of dense SrA(O,N)3 (A = Mo, W) oxynitride ceramics. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3273-3281	6	3
138	A Model for Diffusion and Immobilization of Lithium in SiOC Nanocomposite Anodes. <i>Jom</i> , 2017 , 69, 1524-1531	2.1	3
137	Powder Compaction by Dry Pressing 2014 , 1-37		3
136	Metal Drganic Chemical Vapor Deposition of Metal Oxide Films and Nanostructures 2012 , 291-336		3
135	Vapor-Phase Deposition of Oxides 2012 , 267-290		3

134	Hydrothermal Routes to Advanced Ceramic Powders and Materials 2012, 63-95		3
133	SiOC GlassDiamond Composites. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 545-552	3.8	3
132	Enhanced hydrogen evolution reaction catalyzed by carbon-rich Mo4.8Si3C0.6/C/SiC nanocomposites via a PDC approach. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 1385-1395	3.8	3
131	Effect factors on thermal and mechanical properties of SiO2 and TiB2 modified SiBCN-based adhesives. <i>Ceramics International</i> , 2020 , 46, 19416-19424	5.1	3
130	Electrically conductive silicon oxycarbide thin films prepared from preceramic polymers. <i>International Journal of Applied Ceramic Technology</i> ,	2	3
129	Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 2425-2434	6	3
128	Effect of morphology of C-rich silicon carbonitride ceramic on electrochemical properties of sulfur cathode for Li-S battery. <i>Electrochimica Acta</i> , 2021 , 384, 138265	6.7	3
127	Sustainable paper templated ultrathin, light-weight and flexible niobium carbide based films against electromagnetic interference. <i>Carbon</i> , 2021 , 183, 929-939	10.4	3
126	Ceramic Filters and Membranes117-167		3
125	Polyborosilazane-Derived High Temperature Resistant SiBCNO. <i>Advanced Engineering Materials</i> , 2019 , 21, 1801295	3.5	2
124	Editorial of the special issue on ultra-high temperature ceramic matrix composites. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3551-3552	6	2
123	Photoluminescence of urea- and urea/rhodamine B-capped TiO2 nanoparticles. <i>Materials Chemistry and Physics</i> , 2016 , 177, 472-478	4.4	2
122	Imide-containing ladder polyphenylsilsesquioxanes with high thermal stability and thermoplastic properties. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	2
121	Synthesis of Nanocrystalline Gd2O2NCN from a Versatile Single-source Precursor. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2017 , 643, 1681-1691	1.3	2
120	Formation of aluminum nitride from metal–organic precursors synthesized by reacting aluminum tri-chloride with bis(trimethylsilyl)carbodiimide. <i>Journal of the Ceramic Society of Japan</i> , 2015 , 123, 106-113	1	2
119	Perovskite-type Solid Solution SrMo1\textsux(O, N)3 Oxynitrides: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1533-1539	1.3	2
118	Metal©rganic Chemical Vapor Deposition of Metal Oxide Films and Nanostructures 2014 , 291-336		2
117	The Mn+1 AXn Phases and their Properties 2014 , 299-347		2

116	Sintering 2012 , 141-169		2
115	Orthorhombisches In2O3 Lein metastabiles Indiumsesquioxid- Polymorph. <i>Angewandte Chemie</i> , 2013 , 125, 6659-6663	3.6	2
114	Electrochemical Investigation of Lithium Intercalation in MOCVD Derived Nanostructured Anatase/Rutile TiO2. <i>ECS Transactions</i> , 2011 , 35, 207-213	1	2
113	Influence of the Gas Atmosphere on the Composition and Phase Development of Polymer-Derived SiOC-Ceramics. <i>Journal of the American Ceramic Society</i> , 2007 , 91, 325-328	3.8	2
112	Si-based polymer-derived ceramics for energy conversion and storage. <i>Journal of Advanced Ceramics</i> , 2022 , 11, 197-246	10.7	2
111	Feeding Patterns of Two Commercially Important Fish Species Scomberoides commersonnianus and S. tol in the Northern Arabian Sea Coast of Pakistan. <i>Pakistan Journal of Zoology</i> , 2018 , 50,	1.7	2
110	Polymer-Derived Ceramics (PDCs)1108-1139		2
109	Wet oxidation behavior of C/SiCBiHf(B)CN composites at high temperature. <i>Advanced Composites and Hybrid Materials</i> , 2020 , 3, 415-429	8.7	2
108	Cycle parameter dependent degradation analysis in automotive lithium-ion cells. <i>Journal of Power Sources</i> , 2021 , 506, 230227	8.9	2
107	Compressive thermal stress and microstructure-driven charge carrier transport in silicon oxycarbide thin films. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 6377-6384	6	2
106	Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application. <i>Journal of the European Ceramic Society</i> , 2021 ,	6	2
105	Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1543-1553	9.3	2
104	Novel hydrogen chemisorption properties of amorphous ceramic compounds consisting of p-block elements: exploring Lewis acidBase AlBI pair sites formed in situ within polymer-derived siliconBluminumBitrogen-based systems. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2959-2969	13	2
103	A Novel Non-Oxide Sol-Gel Process to Si-C-N Ceramics. Ceramic Engineering and Science Proceedings,713-	- <u>72</u> 0	2
102	Advanced Ceramic Glow Plugs191-206		2
101	Microwave Ceramics 2013 , 321-344		1
100	Polymer-Derived Ceramics 2014 , 457-500		1
99	Cellular Structures 2014 , 407-441		1

98	Thermal Barrier Coatings 2014 , 95-115	1
97	Sintering of Nanograin Ceramics 2014 , 439-455	1
96	Superplasticity in Ceramics: Accommodation-Controlling Mechanisms Revisited 2014 , 633-663	1
95	Defect Structure, Nonstoichiometry, and Nonstoichiometry Relaxation of Complex Oxides 2014 , 437-478	1
94	Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity 2014 , 373-413	1
93	Modern Trends in Advanced Ceramics 2014 , 1-38	1
92	Tape Casting 2014 , 39-62	1
91	Manufacturing Technology: Rapid Prototyping 2012 , 415-437	1
90	Hot Pressing and Spark Plasma Sintering 2012 , 189-214	1
89	Hot Isostatic Pressing and Gas-Pressure Sintering 2012 , 171-187	1
88	Liquid Feed-Flame Spray Pyrolysis (LF-FSP) in the Synthesis of Single- and Mixed-Metal Oxide Nanopowders 2012 , 97-120	1
87	Sintering of Nanograin Ceramics 2012 , 439-455	1
86	Perovskite Structure Stability in Metal Oxynitrides. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 1631-1631	1
85	Thermal Barrier Coatings 2013 , 95-115	1
84	Modern Trends in Advanced Ceramics 2011 , 1-38	1
83	Sol IGel Modelling Associated with the Rheology of Polymeric Precursors of Ceramic Materials. Applied Rheology, 2003 , 13, 251-258	1
82	High-Pressure Synthesis of a Gallium Oxonitride with a Spinel-Type Structure <i>ChemInform</i> , 2005 , 36, no	1
81	Polymer-Derived Ceramics (PDCs) 2013 , 203-245	1

80	Magnetic Ceramics495-510		1
79	Hydrogen Selective SiCH Inorganic-Organic Hybrid/EAlO Composite Membranes. <i>Membranes</i> , 2020 , 10,	3.8	1
78	Ceramic Fuel Cells: Principles, Materials, and Applications345-371		1
77	Ceramic Gas Sensors447-470		1
76	Diffusion in Ceramics 2014 , 105-182		0
75	Oxidation and Corrosion of Ceramics 2013 , 1-93		О
74	Phase composition, microstructure, and mechanical properties of polymer-derived SiOC glass-ceramics reinforced by WC particles. <i>Journal of the European Ceramic Society</i> , 2022 , 42, 1955-1962	6	0
73	Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis. <i>Catalysts</i> , 2021 , 11, 1353	4	O
72	Microstrain-range giant piezoresistivity of silicon oxycarbide thin films under mechanical cyclic loads. <i>Materials and Design</i> , 2022 , 213, 110323	8.1	0
71	Polymer-Derived Ultra-High Temperature Ceramics (UHTCs) and Related Materials. <i>PoliTO Springer Series</i> , 2021 , 281-323	0.4	O
70	Rapid curing of polysilazane coatings at room temperature via chloride-catalyzed hydrolysis/condensation reactions. <i>Progress in Organic Coatings</i> , 2022 , 167, 106872	4.8	0
69	Two birds with one stone: Simultaneous fabrication of HfC nanowires and CNTs through efficient utilization of polymer-derived ceramics. <i>Journal of Materials Science and Technology</i> , 2022 , 129, 163-172	9.1	O
68	Vapor-Phase Deposition of Oxides 2014 , 267-290		
67	Perovskites 2014 , 257-297		
66	Oxides for Li Intercalation, Li-ion Batteries 2013 , 471-494		
65	Nanosized and Nanostructured Hard and Superhard Materials and Coatings 2013 , 207-234		
64	Structural Chemistry of Ceramics 2014 , 71-103		
63	Structures of Ceramic Materials: Thermodynamics and Constitution 2014 , 183-229		

(2014-2014)

62	Modeling Amorphous Ceramic Structures 2014 , 39-69
61	Mesoscopic Ceramic Structures in One, Two, and Three Dimensions 2014 , 297-346
60	Bulk Ceramic Nanostructures 2014 , 347-373
59	Glass Ceramics: Silica- and Alumina-Based 2014 , 375-406
58	Microstructural Design of Ceramics: Theory and Experiment 2014 , 231-295
57	Ceramic Thin Films 2014 , 443-509
56	Multiphase Fiber Composites 2014 , 511-582
55	Ceramic Oxides 2014 , 1-58
54	Structure P roperty Relations 2014 , 349-378
53	Gallium Nitride and Oxonitrides 2014 , 91-130
53 52	Gallium Nitride and Oxonitrides 2014 , 91-130 Silicon Carbide- and Boron Carbide-Based Hard Materials 2014 , 131-227
52	Silicon Carbide- and Boron Carbide-Based Hard Materials 2014 , 131-227
52 51	Silicon Carbide- and Boron Carbide-Based Hard Materials 2014 , 131-227 Fracture Resistance of Ceramics 2014 , 601-631
52 51 50	Silicon Carbide- and Boron Carbide-Based Hard Materials 2014 , 131-227 Fracture Resistance of Ceramics 2014 , 601-631 Creep Mechanisms in Commercial Grades of Silicon Nitride 2014 , 577-599
52515049	Silicon Carbide- and Boron Carbide-Based Hard Materials 2014 , 131-227 Fracture Resistance of Ceramics 2014 , 601-631 Creep Mechanisms in Commercial Grades of Silicon Nitride 2014 , 577-599 Machining and Finishing of Ceramics 2014 , 247-266
5251504948	Silicon Carbide- and Boron Carbide-Based Hard Materials 2014, 131-227 Fracture Resistance of Ceramics 2014, 601-631 Creep Mechanisms in Commercial Grades of Silicon Nitride 2014, 577-599 Machining and Finishing of Ceramics 2014, 247-266 Oxidation and Corrosion of Ceramics 2014, 1-93

44	Oxides for Li Intercalation, Li-ion Batteries 2014 , 471-494
43	Fundamentals and Methods of Ceramic Joining 2014 , 215-246
42	Hot Pressing and Spark Plasma Sintering 2014 , 189-214
41	Sol G el Processing of Ceramics 2014 , 121-140
40	High-Pressure Routes to Ceramics 2014 , 501-517
39	Powder Characterization 2014 , 337-368
38	Liquid Feed-Flame Spray Pyrolysis (LF-FSP) in the Synthesis of Single- and Mixed-Metal Oxide Nanopowders 2014 , 97-120
37	Hydrothermal Routes to Advanced Ceramic Powders and Materials 2014 , 63-95
36	Sintering 2014 , 141-169
35	Hot Isostatic Pressing and Gas-Pressure Sintering 2014 , 171-187
34	Nonconventional Polymers in Ceramic Processing: Thermoplastics and Monomers 2014 , 395-413
33	Process Defects 2014 , 369-394
32	Ferroelectric Properties 2014 , 729-790
31	Fracture of Ceramics 2014 , 529-575
30	Interfaces and Microstructures in Materials 2014 , 479-528
29	Electrical Conduction in Nanostructured Ceramics 2014 , 697-727
28	Complex Oxynitrides 2014 , 229-256
27	Thermal Conductivity 2014 , 665-696

(2012-2014)

Magnetic Properties of Transition-Metal Oxides: From Bulk to Nano 2014, 791-833 26 Nitrides 2014, 59-89 25 Ceramic Fuel Cells: Principles, Materials, and Applications 2014, 345-371 24 Ceramic Lighting **2014**, 415-445 23 Ceramic Gas Sensors 2014, 447-470 22 Magnetic Ceramics 2014, 495-510 21 Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics 2014, 245-320 20 Nanosized and Nanostructured Hard and Superhard Materials and Coatings 2014, 207-234 19 Microwave Ceramics 2014, 321-344 18 Manufacturing Technology: Rapid Prototyping 2014, 415-437 17 Dislocations in Ceramics 2014, 379-436 16 Nonconventional Polymers in Ceramic Processing: Thermoplastics and Monomers 2012, 395-413 Process Defects 2012, 369-394 14 Powder Characterization 2012, 337-368 13 Machining and Finishing of Ceramics 2012, 247-266 12 Fundamentals and Methods of Ceramic Joining 2012, 215-246 11 High-Pressure Routes to Ceramics 2012, 501-517 10 Sol**©**el Processing of Ceramics **2012**, 121-140

		HALI HILDLE
8	Reply to the Comment on Piezoresistive Effect in SiOC Ceramics for Integrated Pressure Sensors Journal of the American Ceramic Society, 2011, 94, 290-290	3.8
7	Determination of the Diffusion Coefficient of Lithium ions in Graphite Coated with Polymer-Derived SiCN Ceramic. <i>Ceramic Transactions</i> , 2011 , 143-152	0.1
6	Microstructure and Mechanical Properties of Polymer-Derived Al2o3-SiC Micro-Nano Composites. <i>Ceramic Transactions</i> ,151-160	0.1
5	Al2O3-SiC Nanocomposites by Infiltration of Alumina Matrix with a Liquid Polycarbosilane. <i>Ceramic Transactions</i> ,85-99	0.1
4	Ceramic Lighting415-445	
3	High-Temperature Engineering Ceramics169-190	
2	Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversi	ty373-413

Towards a Greener and Scalable Synthesis of NaTiO Nanorods and Their Application as Anodes in Batteries for Grid-Level Energy Storage. *Energy Technology*, **2021**, 9, 2000856

3.5