Soo-Hyung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9038384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Integrative Process-Based Model for Biomass and Yield Estimation of Hardneck Garlic (Allium) Tj ETQq1 1 0.78	4314 rgBT	/Overlock
2	Altered arsenic availability, uptake, and allocation in rice under elevated temperature. Science of the Total Environment, 2021, 763, 143049.	8.0	29
3	Nutritional quality of crops in a high CO ₂ world: an agenda for research and technology development. Environmental Research Letters, 2021, 16, 064045.	5.2	27
4	A spatio-temporal analysis of rice production in Tonle Sap floodplains in response to changing hydrology and climate. Agricultural Water Management, 2021, 258, 107183.	5.6	5
5	Endophytes alleviate the elevated CO2-dependent decrease in photosynthesis in rice, particularly under nitrogen limitation. Journal of Experimental Botany, 2020, 71, 707-718.	4.8	23
6	Coupled Gas-Exchange Model for C4 Leaves Comparing Stomatal Conductance Models. Plants, 2020, 9, 1358.	3.5	5
7	Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus) Tj ETQq1 1	0,784314 3.6	rgBT /Over
8	Modelling climate change impacts on maize yields under low nitrogen input conditions in subâ€ s aharan Africa. Global Change Biology, 2020, 26, 5942-5964.	9.5	60
9	An explanatory model of temperature influence on flowering through whole-plant accumulation of FLOWERING LOCUS T in Arabidopsis thaliana. In Silico Plants, 2019, 1, .	1.9	20
10	Maize yield under a changing climate: The hidden role of vapor pressure deficit. Agricultural and Forest Meteorology, 2019, 279, 107692.	4.8	44
11	A process-based model for leaf development and growth in hardneck garlic (Allium sativum). Annals of Botany, 2019, 124, 1143-1160.	2.9	7
12	Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 2019, 271, 264-284.	4.8	62
13	Maize water use and yield in the solar corridor system: a simulation study. , 2019, , 57-78.		0
14	Advances and improvements in modeling plant processes. Burleigh Dodds Series in Agricultural Science, 2019, , 3-44.	0.2	1
15	Phytochrome B regulates resource allocation in Brassica rapa. Journal of Experimental Botany, 2018, 69, 2837-2846.	4.8	18
16	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	4.1	68
17	Do Endophytes Promote Growth of Host Plants Under Stress? A Meta-Analysis on Plant Stress Mitigation by Endophytes. Microbial Ecology, 2018, 75, 407-418.	2.8	163
18	Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice. Frontiers in Plant Science, 2018, 9, 188.	3.6	30

SOO-НУИNG КІМ

#	Article	IF	CITATIONS
19	Estimating microbial respiratory CO ₂ from endophytic bacteria in rice. Plant Signaling and Behavior, 2018, 13, 1-5.	2.4	5
20	Case studies in co-benefits approaches to climate change mitigation and adaptation. Journal of Environmental Planning and Management, 2017, 60, 647-667.	4.5	42
21	Competitive traits of the invasive grass <i>Arundo donax</i> are enhanced by carbon dioxide and nitrogen enrichment. Weed Research, 2017, 57, 67-71.	1.7	10
22	Endophyte Effects on Photosynthesis and Water Use of Plant Hosts: A Meta-Analysis. , 2017, , 43-69.		6
23	Can a multi-model ensemble improve phenology predictions for climate change studies?. Ecological Modelling, 2017, 362, 54-64.	2.5	30
24	An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. Frontiers in Microbiology, 2017, 8, 386.	3.5	126
25	Cool nightâ€ŧime temperatures induce the expression of <i>CONSTANS</i> and <i>FLOWERING LOCUS T</i> to regulate flowering inÂ <i>Arabidopsis</i> . New Phytologist, 2016, 211, 208-224.	7.3	33
26	Proposed Standards for Peer-Reviewed Publication of Computer Code. Agronomy Journal, 2016, 108, 1782-1786.	1.8	2
27	Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 2016, 6, 38-47.	4.7	132
28	Variable Nitrogen Fixation in Wild Populus. PLoS ONE, 2016, 11, e0155979.	2.5	72
29	Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE, 2016, 11, e0156571.	2.5	377
30	Photosynthetic Acclimation, Biomass Allocation, and Water Use Efficiency of Garlic in Response to Carbon Dioxide Enrichment and Nitrogen Fertilization. Journal of the American Society for Horticultural Science, 2016, 141, 373-380.	1.0	8
31	Diazotrophic Endophytes of Poplar and Willow for Growth Promotion of Rice Plants in Nitrogenâ€Limited Conditions. Crop Science, 2015, 55, 1765-1772.	1.8	74
32	Increased Biomass of Nursery-Grown Douglas-Fir Seedlings upon Inoculation with Diazotrophic Endophytic Consortia. Forests, 2015, 6, 3582-3593.	2.1	38
33	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	4.8	31
34	A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock <i><scp>A</scp>rundo donax</i> . GCB Bioenergy, 2015, 7, 752-762.	5.6	42
35	Does plant performance under stress explain divergent life history strategies? The effects of flooding and nutrient stress on two wetland sedges. Aquatic Botany, 2015, 120, 151-159.	1.6	13
36	Predicting Harvest Maturity of the 'Fuji' Apple at the Gunwi Province of the South Korea using DTS Phenology Model. Journal of Environmental Science International, 2015, 24, 1547-1550.	0.2	1

SOO-НУИNG КІМ

#	Article	IF	CITATIONS
37	Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytologist, 2014, 201, 599-609.	7.3	146
38	Arundo donax water use and photosynthetic responses to drought and elevated CO2. Agricultural Water Management, 2014, 136, 13-22.	5.6	40
39	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	9.5	525
40	Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agronomy Journal, 2014, 106, 2087-2097.	1.8	112
41	An Improved Method for Phenology Model Parameterization Using Sequential Optimization. Korean Journal of Agricultural and Forest Meteorology, 2014, 16, 304-308.	0.2	0
42	Retrieval of Effective Leaf Area Index in Heterogeneous Forests With Terrestrial Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 777-786.	6.3	93
43	Effects of cross host species inoculation of nitrogenâ€fixing endophytes on growth and leaf physiology of maize. GCB Bioenergy, 2013, 5, 408-418.	5.6	59
44	Photosynthetic and Transpiration Responses to Light, CO2, Temperature, and Leaf Senescence in Garlic: Analysis and Modeling. Journal of the American Society for Horticultural Science, 2013, 138, 149-156.	1.0	15
45	Modeling Temperature Responses of Leaf Growth, Development, and Biomass in Maize with MAIZSIM. Agronomy Journal, 2012, 104, 1523-1537.	1.8	62
46	Nitrogen Concentration and Dry-Matter Accumulation in Maize Crop: Assessing Maize Nitrogen Status with an Allometric Function and a Chlorophyll Meter. Communications in Soil Science and Plant Analysis, 2012, 43, 1563-1575.	1.4	13
47	Biochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora spp. in Tree Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1736-1740.	1.0	71
48	Emerging Methods for Diagnostics and Mitigation of Crop Environmental Stress in a Changing Climate. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 684-686.	1.0	2
49	Predicting the Timing of Cherry Blossoms in Washington, DC and Mid-Atlantic States in Response to Climate Change. PLoS ONE, 2011, 6, e27439.	2.5	48
50	Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C3 grass, Phalaris arundinacea. Functional Plant Biology, 2011, 38, 797.	2.1	26
51	Effects of CO ₂ and Temperature on Crops: Lessons from SPAR Growth Chambers. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 55-86.	0.4	2
52	Simulating Canopy Transpiration and Photosynthesis of Corn Plants under Contrasting Water Regimes Using a Coupled Model. Transactions of the ASABE, 2009, 52, 1011-1024.	1.1	28
53	Simulating leaf area of corn plants at contrasting water status. Agricultural and Forest Meteorology, 2009, 149, 1161-1167.	4.8	27
54	Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology, 2009, 149, 1152-1160.	4.8	198

SOO-НУИNG КІМ

55The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 2009, 60, 3279-3295.4.842556The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiology and Biochemistry, 2008, 46, 174-188.5.89257Simulation of Nitrogen Demand and Uptake in Potato Using a Carbon-Assimilation Approach. , 2008, , 219-243.058Analysis and modeling of gas exchange processes in Scaevola aemula. Scientia Horticulturae, 2007, 114, 170-176.3.6259Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Colis. Agronomy Journal, 2007, 99, 166-173.1.83660Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 2007, 61, 224-236.1.84061Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Clobal Change Biology, 2006, 12, 588-600.9.511163Amethod for estimating carbon dioxide leakage rates in controlled environment chambers using nitrous oxide. Environmental and Experimental Botary, 2004, 51, 103-110.4.24064Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural and Forest Meteorology. 2004, 126, 117-127. </th <th>CITATIONS</th>	CITATIONS
56The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiology and Biochemistry, 2008, 46, 174-188.5.89257Simulation of Nitrogen Demand and Uptake in Potato Using a Carbon-Assimilation Approach., 2008, , 219-243.058Analysis and modeling of gas exchange processes in Scaevola aemula. Scientia Horticulturae, 2007, 114, 170-176.3.6259Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Colls. Agronomy Journal, 2007, 99, 166-173.1.83660Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 2007, 61, 224-236.1.84061Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.820	125
57Simulation of Nitrogen Demand and Uptake in Potato Using a Carbon-Assimilation Approach. , 2008, , 219-243.058Analysis and modeling of gas exchange processes in Scaevola aemula. Scientia Horticulturae, 2007, 114, 170-176.3.6259Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Coils. Agronomy Journal, 2007, 99, 166-173.1.83660Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 2007, 61, 224-236.4.214661Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.820	92
58Analysis and modeling of gas exchange processes in Scaevola aemula. Scientia Horticulturae, 2007, 114, 170-176.3.6259Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Coils. Agronomy Journal, 2007, 99, 166-173.1.83660Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 2007, 61, 224-236.4.214661Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.820	D
59Evapotranspiration Measurement in Controlled Environment Chambers: A Comparison between Time Domain Reflectometry and Accumulation of Condensate from Cooling Coils. Agronomy Journal, 2007, 99, 166-173.1.83660Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 2007, 61, 224-236.4.214661Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.24064Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural and Forest Meteorology, 2004, 126, 117-127.4.820	2
60Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2.4.214661Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.820	36
61Approaches to Modeling Potato Leaf Appearance Rate. Agronomy Journal, 2006, 98, 522-528.1.84062Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.24064Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural and Forest Meteorology, 2004, 126, 117-127.4.820	146
62Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology, 2006, 12, 588-600.9.511163A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.24064Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural and Forest Meteorology, 2004, 126, 117-127.4.820	ŧO
63A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. Environmental and Experimental Botany, 2004, 51, 103-110.4.24064Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural and Forest Meteorology, 2004, 126, 117-127.4.820	11
 Quantification of photosynthetically active radiation inside sunlit growth chambers. Agricultural 4.8 20 4.8 20 	40
	20
⁶⁵ Effect of shoot-bending on productivity and economic value estimation of cut-flower roses grown in 3.6 16 Coir and UC Mix. Scientia Horticulturae, 2004, 99, 331-343.	.6
66Bending Alters Water Balance and Reduces Photosynthesis of Rose Shoots. Journal of the American1.02166Society for Horticultural Science, 2004, 129, 896-901.1.021	21
57 Storage effects on genomic DNA in rolled and mature coca leaves. BioTechniques, 2003, 35, 310-316. 1.8 3	3
A Coupled Model of Photosynthesis, Stomatal Conductance and Transpiration for a Rose Leaf (Rosa) Tj ETQq0 0 0 rg BT /Overlock	ock 10 Tf
69 PARAMETERIZATION AND TESTING OF A COUPLED MODEL OF PHOTOSYNTHESIS-STOMATAL CONDUCTANCE 0.2 3 FOR GREENHOUSE ROSE CROP. Acta Horticulturae, 2002, , 113-120.	3
70MODELING PHOTOSYNTHESIS OF HETEROGENEOUS ROSE CROP CANOPIES IN THE GREENHOUSE. Acta Horticulturae, 2002, , 121-128.0.24	ł

71	Simulation of the Effects of Limited Water on Photosynthesis and Transpiration in Field Crops: Can We Advance Our Modeling Approaches?. Advances in Agricultural Systems Modeling, 0, , 105-143.	0.3	2	
----	---	-----	---	--