Soojin Park

List of Publications by Citations

Source: https://exaly.com/author-pdf/9038029/soojin-park-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 220
 11,075
 55
 96

 papers
 citations
 h-index
 g-index

 238
 12,207
 11.6
 6.46

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
220	Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. <i>Nature Nanotechnology</i> , 2012 , 7, 803-9	28.7	666
219	Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. <i>Science</i> , 2009 , 323, 1030-3	33.3	653
218	Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. <i>Materials Science and Engineering Reports</i> , 2011 , 72, 203-252	30.9	415
217	Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. <i>Macromolecules</i> , 2005 , 38, 4311-4323	5.5	338
216	Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. <i>Advanced Materials</i> , 2012 , 24, 4451-6	24	268
215	Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. <i>Nano Letters</i> , 2013 , 13, 2204-8	11.5	230
214	Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. <i>ACS Nano</i> , 2016 , 10, 2843-51	16.7	216
213	High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching. <i>Advanced Energy Materials</i> , 2012 , 2, 878-883	21.8	207
212	Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. <i>Advanced Materials</i> , 2013 , 25, 4498-503	24	202
211	A simple route to highly oriented and ordered nanoporous block copolymer templates. <i>ACS Nano</i> , 2008 , 2, 766-72	16.7	188
210	Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. <i>Energy and Environmental Science</i> , 2011 , 4, 5013	35.4	170
209	A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9506-9513	13	151
208	Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. <i>Nano Letters</i> , 2015 , 15, 5168-77	11.5	150
207	A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO/NiO Nanotubes. <i>ACS Nano</i> , 2016 , 10, 11317-11326	16.7	149
206	Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. <i>ACS Nano</i> , 2017 , 11, 4808-4815	16.7	141
205	Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films. <i>Macromolecules</i> , 2007 , 40, 9059-9063	5.5	135
204	High-performance organic optoelectronic devices enhanced by surface plasmon resonance. <i>Advanced Materials</i> , 2011 , 23, 5689-93	24	132

(2013-2015)

203	High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. <i>Energy and Environmental Science</i> , 2015 , 8, 2075-2084	35.4	110
202	Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor. <i>Macromolecules</i> , 2009 , 42, 1278-128	34 5.5	107
201	Flexible high-energy Li-ion batteries with fast-charging capability. <i>Nano Letters</i> , 2014 , 14, 4083-9	11.5	106
200	Additional hardening in harmonic structured materials by strain partitioning and back stress. <i>Materials Research Letters</i> , 2018 , 6, 261-267	7.4	104
199	Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 206-212	21.8	102
198	Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. <i>Nano Letters</i> , 2013 , 13, 3403-7	11.5	101
197	Polymer characterization by temperature gradient interaction chromatography. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 2188-2204	2.6	100
196	Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9870-1	16.4	98
195	Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 7878	35.4	97
194	Block-copolymer-based plasmonic nanostructures. ACS Nano, 2009 , 3, 3987-92	16.7	97
193	From nanorings to nanodots by patterning with block copolymers. <i>Nano Letters</i> , 2008 , 8, 1667-72	11.5	96
192	Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 1739-1746	16.7	94
191	Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. <i>ACS Nano</i> , 2019 , 13, 2307-2315	16.7	93
190	A Novel Approach to Addressable 4 Teradot/in.2 Patterned Media. <i>Advanced Materials</i> , 2009 , 21, 2516-2	2 5 49	90
189	Self-assembling molecular trees containing octa-p-phenylene: from nanocrystals to nanocapsules. Journal of the American Chemical Society, 2004 , 126, 6294-300	16.4	90
188	Multicomponent nanopatterns by directed block copolymer self-assembly. ACS Nano, 2013, 7, 8899-907	7 16.7	86
187	Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability. <i>ACS Nano</i> , 2016 , 10, 10589-10597	16.7	81
186	Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for ZnBir batteries. <i>Journal of Power Sources</i> , 2013 , 243, 267-273	8.9	81

185	Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1402-6	11.5	81
184	Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2767-71	16.4	78
183	Optimization of Carbon- and Binder-Free Au Nanoparticle-Coated Ni Nanowire Electrodes for Lithium-Oxygen Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1401030	21.8	75
182	High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. <i>Nano Energy</i> , 2013 , 2, 146-152	17.1	73
181	Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. <i>Nano Letters</i> , 2011 , 11, 4324-8	11.5	73
180	Practical considerations of Si-based anodes for lithium-ion battery applications. <i>Nano Research</i> , 2017 , 10, 3970-4002	10	70
179	Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. <i>Langmuir</i> , 2011 , 27, 809-14	4	70
178	Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. <i>Nature Communications</i> , 2018 , 9, 2924	17.4	69
177	Stretchable batteries with gradient multilayer conductors. <i>Science Advances</i> , 2019 , 5, eaaw1879	14.3	67
176	Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 18001-7	9.5	67
175	Recent Progress in Stretchable Batteries for Wearable Electronics. <i>Batteries and Supercaps</i> , 2019 , 2, 181	I -51.19 9	65
174	Sub-Nanometer Level Size Tuning of a Monodisperse Nanoparticle Array Via Block Copolymer Lithography. <i>Advanced Functional Materials</i> , 2011 , 21, 250-254	15.6	65
173	Unexpected Hexagonally Perforated Layer Morphology of PS-b-PMMA Block Copolymer in Supported Thin Film. <i>Macromolecules</i> , 2006 , 39, 315-318	5.5	63
172	Stretchable Aqueous Batteries: Progress and Prospects. ACS Energy Letters, 2019, 4, 177-186	20.1	62
171	Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process. <i>Nano Energy</i> , 2013 , 2, 1271-1278	17.1	61
170	Mass production of uniform-sized nanoporous silicon nanowire anodes viablock copolymer lithography. <i>Energy and Environmental Science</i> , 2011 , 4, 3395	35.4	60
169	Jabuticaba-Inspired Hybrid Carbon Filler/Polymer Electrode for Use in Highly Stretchable Aqueous Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702478	21.8	58
168	Retention mechanism of poly(ethylene oxide) in reversed-phase and normal-phase liquid chromatography. <i>Journal of Chromatography A</i> , 2003 , 986, 191-8	4.5	58

(2016-2003)

167	Effect of Block Copolymer Chain Architecture on Chromatographic Retention. <i>Macromolecules</i> , 2003 , 36, 8539-8543	5.5	56
166	Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices. <i>ACS Nano</i> , 2015 , 9, 2203-12	16.7	55
165	Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. <i>Nano Energy</i> , 2015 , 12, 161-168	17.1	54
164	Fractionation of Block Copolymers Prepared by Anionic Polymerization into Fractions Exhibiting Three Different Morphologies. <i>Macromolecules</i> , 2002 , 35, 5974-5979	5.5	54
163	A simple route for the preparation of mesoporous nanostructures using block copolymers. <i>ACS Nano</i> , 2009 , 3, 2827-33	16.7	52
162	Directed self-assembly of block copolymers on two-dimensional chemical patterns fabricated by electro-oxidation nanolithography. <i>Advanced Materials</i> , 2010 , 22, 2268-72	24	52
161	Room-Temperature Crosslinkable Natural Polymer Binder for High-Rate and Stable Silicon Anodes. <i>Advanced Functional Materials</i> , 2020 , 30, 1908433	15.6	52
160	Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. <i>Advanced Materials</i> , 2017 , 29, 1702625	24	51
159	High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. <i>Energy and Environmental Science</i> , 2014 , 7, 306-310	35.4	51
158	Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. <i>Nanoscale</i> , 2013 , 5, 11620-4	7.7	51
157	Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation. <i>Science Advances</i> , 2015 , 1, e1500101	14.3	50
156	Ordering of PS-b-P4VP on patterned silicon surfaces. <i>ACS Nano</i> , 2008 , 2, 1363-70	16.7	50
155	Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and high-capacity lithium-ion batteries. <i>ACS Applied Materials & District Research</i> , 10, 6340-5	9.5	47
154	Interaction-controlled HPLC for block copolymer analysis and separation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8906-7	16.4	47
153	Liquid chromatography at the critical condition for polyisoprene using a single solvent. <i>Analytical Chemistry</i> , 2001 , 73, 3884-9	7.8	47
152	Effect of Junction Point Functionality on the Lamellar Spacing of Symmetric (PS)n(PI)n Miktoarm Star Block Copolymers. <i>Macromolecules</i> , 2003 , 36, 5719-5724	5.5	46
151	Closed-Loop Phase Behavior of Polystyrene-block-poly(n-pentyl methacrylate) Copolymers with Various Block Length Ratios. <i>Macromolecules</i> , 2004 , 37, 3717-3724	5.5	45
150	All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Materials, 2016 , 8, e248-e248	10.3	45

149	Structural Characterization of Ring Polystyrene by Liquid Chromatography at the Critical Condition and MALDITOF Mass Spectrometry. <i>Macromolecules</i> , 2001 , 34, 7570-7572	5.5	44
148	A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation. <i>Chemical Communications</i> , 2015 , 51, 4429-32	5.8	43
147	Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. <i>Small</i> , 2007 , 3, 1869-72	11	43
146	Recent progress in aqueous based flexible energy storage devices. <i>Energy Storage Materials</i> , 2020 , 30, 260-286	19.4	43
145	Fast, Scalable Synthesis of Micronized Ge3N4@C with a High Tap Density for Excellent Lithium Storage. <i>Advanced Functional Materials</i> , 2017 , 27, 1605975	15.6	42
144	Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. <i>Small</i> , 2017 , 13, 1603045	11	41
143	Fabrication of Pt/Au concentric spheres from triblock copolymer. ACS Nano, 2010, 4, 1124-30	16.7	41
142	Hygroscopic Auxetic On-Skin Sensors for Easy-to-Handle Repeated Daily Use. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40141-40148	9.5	41
141	Highly Stretchable Separator Membrane for Deformable Energy-Storage Devices. <i>Advanced Energy Materials</i> , 2018 , 8, 1801025	21.8	41
140	Ultrahigh-Energy-Density Lithium-Ion Batteries Based on a High-Capacity Anode and a High-Voltage Cathode with an Electroconductive Nanoparticle Shell. <i>Advanced Energy Materials</i> , 2014 , 4, 1301542	21.8	40
139	High-Performance, Layered, 3D-LiCoO2 Cathodes with a Nanoscale Co3O4 Coating via Chemical Etching. <i>Advanced Energy Materials</i> , 2011 , 1, 368-372	21.8	39
138	Precise placements of metal nanoparticles from reversible block copolymer nanostructures. Journal of Materials Chemistry, 2010 , 20, 5047		39
137	HPLC Fractionation and Surface Micellization Behavior of Polystyrene-b-poly(methyl methacrylate). <i>Macromolecules</i> , 2005 , 38, 6122-6127	5.5	39
136	Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. <i>Nano Energy</i> , 2017 , 32, 255-262	17.1	38
135	Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10687-10692	13	38
134	Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes. <i>Journal of Power Sources</i> , 2015 , 300, 351-357	8.9	38
133	High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. <i>RSC Advances</i> , 2013 , 3, 2538	3.7	38
132	Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage. Nature Communications, 2019 , 10, 2351	17.4	37

(2019-2018)

131	Foldable Electrode Architectures Based on Silver-Nanowire-Wound or Carbon-Nanotube-Webbed Micrometer-Scale Fibers of Polyethylene Terephthalate Mats for Flexible Lithium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, 1705445	24	37	
130	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. <i>Nanoscale</i> , 2014 , 6, 10604-10	7.7	37	
129	Efficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803722	21.8	37	
128	Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. <i>Nanoscale</i> , 2015 , 7, 6126-35	7.7	36	
127	Utility of Interaction Chromatography for Probing Structural Purity of Model Branched Copolymers: 4-Miktoarm Star Copolymer. <i>Macromolecules</i> , 2003 , 36, 5834-5838	5.5	34	
126	Phase Diagram Constructed from the HPLC Fractions of a Polystyrene-b-polyisoprene Prepared by Anionic Polymerization. <i>Macromolecules</i> , 2003 , 36, 4662-4666	5.5	34	
125	Amphiphilic Graft Copolymers as a Versatile Binder for Various Electrodes of High-Performance Lithium-Ion Batteries. <i>Small</i> , 2016 , 12, 3119-27	11	33	
124	Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. <i>Green Chemistry</i> , 2016 , 18, 2710-2716	10	33	
123	Stress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability. <i>ACS Nano</i> , 2018 , 12, 8169-8176	16.7	33	
122	Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14195-14200	13	33	
121	Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1325-1332	13	32	
120	Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. <i>Nano Energy</i> , 2016 , 26, 192-199	17.1	32	
119	Highly ordered nanoporous template from triblock copolymer. ACS Nano, 2011, 5, 1207-14	16.7	32	
118	Preparation of metallic line patterns from functional block copolymers. <i>Small</i> , 2009 , 5, 1343-8	11	32	
117	HPLC and MALDI-TOF MS analysis of highly branched polystyrene: resolution enhancement by branching. <i>Analytical Chemistry</i> , 2004 , 76, 2638-42	7.8	31	
116	Characterization of a 4-miktoarm star copolymer of the (PS-b-PI)3 PS type by temperature gradient interaction chromatography. <i>European Polymer Journal</i> , 2003 , 39, 2155-2160	5.2	31	
115	Retention mechanism of fatty alcohol ethoxylates in reversed-phase liquid chromatography. <i>Journal of Chromatography A</i> , 2003 , 986, 199-206	4.5	30	
114	Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution. <i>Nature Communications</i> , 2019 , 10, 2364	17.4	29	

113	An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21112-9	3.6	29
112	Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2003761	15.6	29
111	Chemical-Assisted Thermal Disproportionation of Porous Silicon Monoxide into Silicon-Based Multicomponent Systems. <i>Angewandte Chemie</i> , 2012 , 124, 2821-2825	3.6	29
110	Supramolecular assembly of end-functionalized polymer mixtures confined in nanospheres. <i>ACS Nano</i> , 2011 , 5, 115-22	16.7	28
109	A simple top-down/bottom-up approach to sectored, ordered arrays of nanoscopic elements using block copolymers. <i>Small</i> , 2009 , 5, 1064-9	11	28
108	Temperature gradient interaction chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of air terminated polystyryllithium. <i>Journal of Chromatography A</i> , 2002 , 958, 183-9	4.5	28
107	A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. <i>Nanoscale</i> , 2016 , 8, 9245-53	7.7	28
106	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1902499	15.6	28
105	Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance. <i>Journal of Power Sources</i> , 2018 , 374, 217-224	8.9	28
104	Property of diblock copolymer having extremely narrow molecular weight distribution. <i>Polymer</i> , 2008 , 49, 2170-2175	3.9	27
103	Multifunctional Free-Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for High-Performance Lithium-Sulfur Batteries. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1470-1474	4.5	26
102	Phase transition behavior in thin films of block copolymers by use of immiscible solvent vapors. <i>Soft Matter</i> , 2011 , 7, 443-447	3.6	26
101	Guided assemblies of ferritin nanocages: highly ordered arrays of monodisperse nanoscopic elements. <i>Advanced Materials</i> , 2010 , 22, 2583-7	24	26
100	High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18070-1	8075	25
99	Bicontinuous structured silicon anode exhibiting stable cycling performance at elevated temperature. <i>RSC Advances</i> , 2013 , 3, 21320	3.7	25
98	Back-Stress Effect on the Mechanical Strength of TWIP-IF Steels Layered Sheet. <i>Metals and Materials International</i> , 2019 , 25, 912-917	2.4	24
97	General Recyclable Redox-Metallothermic Reaction Route to Hierarchically Porous Carbon/Metal Composites. <i>Chemistry of Materials</i> , 2016 , 28, 4403-4408	9.6	24
96	Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts. <i>Communications Chemistry</i> , 2018 , 1,	6.3	24

(2012-2014)

95	Control of interfacial layers for high-performance porous Si lithium-ion battery anode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 16360-7	9.5	24
94	Surface engineering of sponge-like silicon particles for high-performance lithium-ion battery anodes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7045-9	3.6	23
93	Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10617	13	23
92	Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries. <i>ChemSusChem</i> , 2013 , 6, 1153-7	8.3	23
91	Fabrication of gold dot, ring, and corpuscle arrays from block copolymer templates via a simple modification of surface energy. <i>Nanoscale</i> , 2011 , 3, 5007	7.7	23
90	Enhanced open circuit voltage by hydrophilic ionic liquids as buffer layer in conjugated polymer-nanoporous titania hybrid solar cells. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15309-14	3.6	22
89	Development of various PS-b-P4VP micellar morphologies: fabrication of inorganic nanostructures from micellar templates. <i>Journal of Colloid and Interface Science</i> , 2011 , 356, 1-7	9.3	22
88	Self-assembly of block copolymers on flexible substrates. <i>Advanced Materials</i> , 2010 , 22, 1882-4	24	22
87	Temperature gradient interaction chromatography and MALDI-TOF mass spectrometry analysis of stereoregular poly(ethyl methacrylate)s. <i>Analytical Chemistry</i> , 2002 , 74, 1928-31	7.8	22
86	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20325-20334	13	21
85	Stand-Alone Intrinsically Stretchable Electronic Device Platform Powered by Stretchable Rechargeable Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 2003608	15.6	21
84	Lithium Metal Interface Modification for High-Energy Batteries: Approaches and Characterization. <i>Batteries and Supercaps</i> , 2020 , 3, 828-859	5.6	20
83	Spatial control of dewetting: highly ordered Teflon nanospheres. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 416-23	9.3	20
82	Characterization of Poly(2-vinylpyridine) by Temperature Gradient Interaction Chromatography. <i>Macromolecules</i> , 2006 , 39, 3466-3468	5.5	19
81	Metal Deposition on a Self-Generated Microfibril Network to Fabricate Stretchable Tactile Sensors Providing Analog Position Information. <i>Advanced Materials</i> , 2018 , 30, e1801408	24	19
80	Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures. <i>Nano Letters</i> , 2016 , 16, 1179-85	11.5	18
79	Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15828-15837	13	18
78	Ordering evolution of block copolymer thin films upon solvent-annealing process. <i>Journal of Colloid and Interface Science</i> , 2012 , 383, 118-23	9.3	18

77	Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2095-2101	13	17
76	Fundamental Understanding of Nanostructured Si Electrodes: Preparation and Characterization. <i>ChemNanoMat</i> , 2018 , 4, 319-337	3.5	17
75	An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. <i>RSC Advances</i> , 2016 , 6, 6960-6966	3.7	17
74	A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 11286-90	7.7	17
73	Fast size-exclusion chromatography at high temperature. <i>Journal of Chromatography A</i> , 2007 , 1157, 96-	1.p <u>.</u> g	17
72	Rapid molecular weight analysis of polymers by temperature gradient interaction chromatography. Journal of Chromatography A, 2005 , 1075, 145-50	4.5	17
71	Graphene-wrapped Porous Sb Anodes for Sodium-Ion Batteries by Mechanochemical Compositing and Metallomechanical Reduction of Sb2O3. <i>Electrochimica Acta</i> , 2017 , 252, 25-32	6.7	16
70	High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films. <i>Nanoscale</i> , 2012 , 4, 1362-7	7.7	16
69	Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1711-7	4.5	16
68	A multi-stacked hyperporous silicon flake for highly active solar hydrogen production. <i>Chemical Communications</i> , 2016 , 52, 10221-4	5.8	16
67	Organogel electrolyte for high-loading silicon batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8005	-80909	16
66	Multi-functionalities of natural polysaccharide for enhancing electrochemical performance of macroporous Si anodes. <i>RSC Advances</i> , 2014 , 4, 3070-3074	3.7	15
65	Patterning of electrodes for mechanically robust and bendable lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22366		15
64	High temperature size exclusion chromatography. <i>Macromolecular Research</i> , 2006 , 14, 383-386	1.9	15
63	Enhancement of electrochemical properties by polysulfide trapping in a graphene-coated sulfur cathode on patterned current collector. <i>Chemical Communications</i> , 2016 , 52, 3203-6	5.8	14
62	Characterization of polydisperse poly(vinyl chloride) by temperature gradient interaction chromatography. <i>Journal of Chromatography A</i> , 2006 , 1123, 22-5	4.5	14
61	Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns. <i>ACS Nano</i> , 2018 , 12, 1642-1649	16.7	12
60	Metamorphosis of Seaweeds into Multitalented Materials for Energy Storage Applications. <i>Advanced Energy Materials</i> , 2019 , 9, 1900570	21.8	11

59	Plasmon-Assisted Designable Multi-Resonance Photodetection by Graphene via Nanopatterning of Block Copolymer. <i>ACS Photonics</i> , 2015 , 2, 506-514	6.3	11
58	Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15961-15967	13	11
57	Preparation of 1 inch gold nanowires from PS-b-P4VP block copolymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1198-1202		11
56	A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. <i>Energy Storage Materials</i> , 2022 , 45, 941-951	19.4	11
55	Three-Dimensional Monolithic Organic Battery Electrodes. ACS Nano, 2019, 13, 14357-14367	16.7	11
54	General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. <i>ChemSusChem</i> , 2014 , 7, 3483-90	8.3	10
53	The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots. <i>Nanotechnology</i> , 2010 , 21, 245304	3.4	10
52	Constitutive Modeling with Critical Twinning Stress in CoCrFeMnNi High Entropy Alloy at Cryogenic Temperature and Room Temperature. <i>Metals and Materials International</i> , 2021 , 27, 2300-2309	2.4	10
51	Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. <i>Science Advances</i> , 2021 , 7,	14.3	10
50	Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires. <i>Nano Letters</i> , 2019 , 19, 4306-4	431.3	9
50 49	Directional Ostwald Ripening for Producing Aligned Arrays of Nanowires. <i>Nano Letters</i> , 2019 , 19, 4306-48. Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50	431.3 11.5	9
Ť	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel	11.5	
49	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50	11.5	9
49	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50 Sliding chains keep particles together. <i>Science</i> , 2017 , 357, 250-251 Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light	11.5 33·3	9
49 48 47	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50 Sliding chains keep particles together. <i>Science</i> , 2017 , 357, 250-251 Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 17569-17576 Patterning of various silicon structures via polymer lithography and catalytic chemical etching.	33·3 3.8	9 9
49 48 47 46	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50 Sliding chains keep particles together. <i>Science</i> , 2017 , 357, 250-251 Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 17569-17576 Patterning of various silicon structures via polymer lithography and catalytic chemical etching. <i>Nanotechnology</i> , 2011 , 22, 275305 Fabrication of Nanoporous Block Copolymer Thin Films through Mediation of Interfacial	33·3 3.8 3.4	9 9 9
49 48 47 46 45	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50 Sliding chains keep particles together. <i>Science</i> , 2017 , 357, 250-251 Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 17569-17576 Patterning of various silicon structures via polymer lithography and catalytic chemical etching. <i>Nanotechnology</i> , 2011 , 22, 275305 Fabrication of Nanoporous Block Copolymer Thin Films through Mediation of Interfacial Interactions with UV Cross-Linked Polystyrene. <i>Macromolecules</i> , 2009 , 42, 7213-7216 Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium	33.3 3.8 3.4 5.5	9 9 9 9

41	Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation. <i>Nanoscale Research Letters</i> , 2012 , 7, 440	5	8
40	Fabrication of highly ordered silicon pin-in-a-hole nanostructuresvia chemical etching of nanopatterned polymer masks. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11996		8
39	Design of a Janus-Faced Electrode for Highly Stretchable ZincBilver Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2004137	15.6	8
38	A Dry Room-Free High-Energy Density Lithium-ion Batteries Enabled by Impurity Scavenging Separator Membrane. <i>Energy Storage Materials</i> , 2021 , 36, 355-364	19.4	8
37	Electroactive 1T-MoS Fluoroelastomer Ink for Intrinsically Stretchable Solid-State In-Plane Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 26870-26878	9.5	8
36	Shape control of cadmium hydroxides (Cd(OH)2) sensitive to pH quenching depth and massive production of CdSe nanocrystals by their chemical transformation. <i>Nanotechnology</i> , 2011 , 22, 315604	3.4	7
35	Zinc-Reduced Mesoporous TiO Li-Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3382-3388	4.5	7
34	A Three-Dimensional Nano-web Scaffold of Ferroelectric Beta-PVDF Fibers for Lithium Metal Plating and Stripping. <i>ACS Applied Materials & Endows Stripping Stripping Plating and Stripping Plating and Stripping ACS Applied Materials & Discourse Plating and Stripping Plating Plati</i>	9.5	6
33	Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. <i>Energy Storage Materials</i> , 2020 , 33, 164-172	19.4	6
32	Dual Buffering Inverse Design of Three-Dimensional Graphene-Supported Sn-TiO Anodes for Durable Lithium-Ion Batteries. <i>Small</i> , 2020 , 16, e2004861	11	6
31	Stable Bioelectric Signal Acquisition Using an Enlarged Surface-Area Flexible Skin Electrode. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 1842-1851	4	6
30	Fabrication of Carbon Nanofibers Decorated with Various Kinds of Metal Oxides for Battery Applications. <i>Energies</i> , 2021 , 14, 1353	3.1	6
29	Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 568-576	4.5	5
28	Gold double-ring structures synthesized from block copolymer corpuscle templates. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 692-5	4.5	5
27	A simple fabrication of interconnected CuO nanotube electrodes for high-performance lithium-ion batteries. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1377-80	4.5	5
26	Revisiting Classical Rocking Chair Lithium-Ion Battery. <i>Macromolecular Research</i> , 2020 , 28, 1175-1191	1.9	5
25	Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 89176-89180	3.7	5
24	Hierarchically Structured Multidimensional Carbon Composite Anchored to a Polymer Mat for a Superflexible Supercapacitor. <i>ACS Applied Energy Materials</i> , 2019 , 2, 389-397	6.1	5

23	Breathable Artificial Interphase for Dendrite-Free and Chemo-Resistive Lithium Metal Anode. <i>Small</i> , 2021 , e2105724	11	5
22	CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer. <i>Journal of Colloid and Interface Science</i> , 2014 , 417, 166-70	9.3	4
21	NANOSCALE PATTERNING IN BLOCK COPOLYMER THIN FILMS. <i>Nano</i> , 2010 , 05, 1-11	1.1	4
20	Unusual Sensitivity of Closed-Loop Phase Behavior to Chain Size and Distribution. <i>Macromolecules</i> , 2007 , 40, 8066-8070	5.5	4
19	Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2922-2931	6.1	4
18	Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal carbonates. <i>Energy Storage Materials</i> , 2021 , 38, 509-519	19.4	4
17	A renewable future: a comprehensive perspective from materials to systems for next-generation batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3344-3377	7.8	4
16	Effect of Processing Route on Microstructure and Mechanical Properties in Single-Roll Angular-Rolling. <i>Materials</i> , 2020 , 13,	3.5	3
15	Ag2Se micropatterns via viscoelastic flow-driven phase separation. RSC Advances, 2012, 2, 4343	3.7	3
14	BLOCK COPOLYMER THIN FILMS. Series in Sof Condensed Matter, 2008 , 1-25		3
13	Block-Copolymer-Based Au/Ag Nanoring Arrays with Widely Tunable Surface Plasmon Resonance. <i>Science of Advanced Materials</i> , 2015 , 7, 842-847	2.3	3
12	Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	3
11	Nanopatterning and Functionality of Block-Copolymer Thin Films 2011, 401-474		2
10	Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles. <i>Langmuir</i> , 2010 , 26, 7451-7	4	2
9	Geomimetic Hydrothermal Synthesis of Polyimide-Based Covalent Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2
8	Rational Structure Design of Fast-Charging NiSb Bimetal Nanosheet Anode for Lithium Ion Batteries. <i>Energy & Design Studies</i> , 2020, 34, 10211-10217	4.1	2
7			
7	Fabrication of gold nanoparticles and silicon oxide corpuscles from block copolymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1156-1160		1

5	High-Energy-Density Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10050-10058	6.1	1
4	Air-Permeable Waterproofing Electrocardiogram Patch to Monitor Full-Day Activities for Multiple Days <i>Advanced Healthcare Materials</i> , 2022 , e2102703	10.1	1
3	Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials, 2203194	+ 24	1
2	Salt-mediated extraction of nanoscale Si building blocks: composite anode for Li-ion full battery with high energy density. <i>Materials Advances</i> , 2020 , 1, 2797-2803	3.3	Ο
1	Nanoscale anodes for rechargeable batteries: Fundamentals and design principles 2021 , 91-157		0