## Michael C Hogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9037584/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle.<br>Diabetes, 2022, 71, 906-920.                                                                                                                                           | 0.6  | 3         |
| 2  | Role of parvalbumin in fatigue-induced changes in force and cytosolic calcium transients in intact single mouse myofibers. Journal of Applied Physiology, 2022, 132, 1041-1053.                                                                                         | 2.5  | 5         |
| 3  | What Wasserman wrought: a celebratory review of 50Âyears of research arising from the concept of<br>an †anaerobic threshold'. Journal of Physiology, 2021, 599, 1005-1005.                                                                                              | 2.9  | 3         |
| 4  | Microvascular O2 delivery and O2 utilization during metabolic transitions in skeletal muscle.<br>One-hundred years after the pioneering work by August Krogh. Comparative Biochemistry and<br>Physiology Part A, Molecular & Integrative Physiology, 2021, 252, 110842. | 1.8  | 8         |
| 5  | Advances in exercise physiology: exercise and health. Journal of Physiology, 2021, 599, 769-770.                                                                                                                                                                        | 2.9  | 0         |
| 6  | AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.                                                                                                                      | 2.9  | 6         |
| 7  | Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity:<br>Perâ€protocol analysis of a randomized controlled trial (GOâ€ACTIWE). Physiological Reports, 2021, 9,<br>e14850.                                               | 1.7  | 2         |
| 8  | Direct small molecule ADaM-site AMPK activators reveal an AMPKÎ <sup>3</sup> 3-independent mechanism for blood<br>glucose lowering. Molecular Metabolism, 2021, 51, 101259.                                                                                             | 6.5  | 10        |
| 9  | Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise.<br>Journal of Physiology, 2020, 598, 303-315.                                                                                                                        | 2.9  | 35        |
| 10 | The insulinâ€sensitizing effect of a single exercise bout is similar in type I and type II human muscle<br>fibres. Journal of Physiology, 2020, 598, 5687-5699.                                                                                                         | 2.9  | 13        |
| 11 | pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell, 2020, 183, 62-75.e17.                                                                                                                                                           | 28.9 | 129       |
| 12 | Effect of acute nitrite infusion on contractile economy and metabolism in isolated skeletal muscle in situ during hypoxia. Journal of Physiology, 2020, 598, 2371-2384.                                                                                                 | 2.9  | 5         |
| 13 | Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but<br>dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020,<br>40, 101028.                                             | 6.5  | 32        |
| 14 | Reply from Stephen J. Bailey, Paulo G. Gandra, Andrew M. Jones, Michael C. Hogan and Leonardo<br>Nogueira. Journal of Physiology, 2020, 598, 1643-1644.                                                                                                                 | 2.9  | 0         |
| 15 | A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised<br>Muscle Leading to Decreased Whole-Body Insulin Action. Diabetes, 2020, 69, 578-590.                                                                                | 0.6  | 21        |
| 16 | Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 2020, 39, 100998.                                                                                       | 6.5  | 29        |
| 17 | ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPK1±2. Molecular Metabolism, 2020, 35, 100949.                                                                                                         | 6.5  | 25        |
| 18 | Racial disparities in skeletal muscle: alternative approaches in glucose metabolism after exercise<br>training in obese women of African ancestry. Journal of Physiology, 2020, 598, 2551-2552.                                                                         | 2.9  | 0         |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Inhibition of Sâ€nitrosoglutathione Reductase During Contractions Slows Recovery of Lowâ€Frequency<br>Force in Isolated Fastâ€twitch Muscle and in Intact Single Myofibers. FASEB Journal, 2020, 34, 1-1. | 0.5  | 0         |
| 20 | Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological. Journal of Physiology, 2019, 597, 5429-5443.                                                | 2.9  | 40        |
| 21 | TBC1D4 Is Necessary for Enhancing Muscle Insulin Sensitivity in Response to AICAR and Contraction.<br>Diabetes, 2019, 68, 1756-1766.                                                                      | 0.6  | 40        |
| 22 | AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction.<br>Diabetes, 2019, 68, 1427-1440.                                                                         | 0.6  | 67        |
| 23 | Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology -<br>Endocrinology and Metabolism, 2019, 316, E615-E621.                                                            | 3.5  | 25        |
| 24 | ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.<br>Diabetes, 2019, 68, 502-514.                                                                           | 0.6  | 20        |
| 25 | Exercise training reduces the insulinâ€sensitizing effect of a single bout of exercise in human skeletal muscle. Journal of Physiology, 2019, 597, 89-103.                                                | 2.9  | 41        |
| 26 | Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 2019, 29,<br>50-63.e4.                                                                                              | 16.2 | 50        |
| 27 | A mitochondrialâ€ŧargeted antioxidant improves myofilament Ca <sup>2+</sup> sensitivity during prolonged low frequency force depression at low. Journal of Physiology, 2018, 596, 1079-1089.              | 2.9  | 16        |
| 28 | Exercise increases circulating GDF15 in humans. Molecular Metabolism, 2018, 9, 187-191.                                                                                                                   | 6.5  | 109       |
| 29 | Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.                                                                                       | 16.2 | 426       |
| 30 | Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism, 2018, 11, 160-177.                                              | 6.5  | 60        |
| 31 | Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.<br>Menopause, 2018, 25, 165-175.                                                                           | 2.0  | 21        |
| 32 | Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal<br>muscle. Molecular Metabolism, 2018, 16, 24-34.                                                            | 6.5  | 58        |
| 33 | Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human<br>Primates and Mice. Cell Metabolism, 2017, 25, 1147-1159.e10.                                            | 16.2 | 205       |
| 34 | Acute Hypoglycemia in Healthy Humans Impairs Insulin-Stimulated Glucose Uptake and Glycogen<br>Synthase in Skeletal Muscle: A Randomized Clinical Study. Diabetes, 2017, 66, 2483-2494.                   | 0.6  | 7         |
| 35 | Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in<br>Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.                              | 0.6  | 120       |
| 36 | Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and<br>Cellular Proteomics, 2017, 16, 2055-2068.                                                                | 3.8  | 56        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes, 2017,<br>66, 2583-2595.                                                                                                                        | 0.6  | 46        |
| 38 | Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.                                                                                                                                 | 0.6  | 137       |
| 39 | Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates.<br>Molecular Metabolism, 2017, 6, 22-29.                                                                                                             | 6.5  | 95        |
| 40 | Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R192-R199.         | 1.8  | 19        |
| 41 | Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers. Journal of Applied Physiology, 2016, 120, 1260-1266.                                                                 | 2.5  | 5         |
| 42 | Exercise and oxidative stress. Journal of Physiology, 2016, 594, 5079-5080.                                                                                                                                                                      | 2.9  | 15        |
| 43 | Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal<br>Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From<br>Exercise. Diabetes, 2016, 65, 1219-1230.    | 0.6  | 62        |
| 44 | Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle. Biochemistry and Biophysics Reports, 2015, 4, 342-350.                                                           | 1.3  | 7         |
| 45 | Human muscle fibre typeâ€specific regulation of AMPK and downstream targets by exercise. Journal of Physiology, 2015, 593, 2053-2069.                                                                                                            | 2.9  | 90        |
| 46 | Recovery of Indicators of Mitochondrial Biogenesis, Oxidative Stress, and Aging With (â^)-Epicatechin<br>in Senile Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70,<br>1370-1378.                    | 3.6  | 76        |
| 47 | Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent<br>Manner. Diabetes, 2015, 64, 2042-2055.                                                                                                    | 0.6  | 115       |
| 48 | Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated<br>Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.                                                                            | 16.2 | 333       |
| 49 | Human Muscle Fiber Type–Specific Insulin Signaling: Impact of Obesity and Type 2 Diabetes. Diabetes, 2015, 64, 485-497.                                                                                                                          | 0.6  | 150       |
| 50 | Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. Journal of Physiology, 2014, 592, 351-375.                                                           | 2.9  | 95        |
| 51 | Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner.<br>Journal of Diabetes and Its Complications, 2014, 28, 71-78.                                                                                 | 2.3  | 23        |
| 52 | Ca <sup>2+</sup> -pumping impairment during repetitive fatiguing contractions in single myofibers:<br>role of cross-bridge cycling. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2013, 305, R118-R125. | 1.8  | 19        |
| 53 | Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle–Signaling Interaction at the Level of TBC1 Domain Family Member 4. Diabetes, 2012, 61, 2743-2752.                                                                  | 0.6  | 92        |
| 54 | Mitochondrial activation at the onset of contractions in isolated myofibres during successive contractile periods. Journal of Physiology, 2012, 590, 3597-3609.                                                                                  | 2.9  | 28        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of hypoxia on single skeletal muscle fiber contractility at physiological temperature. FASEB<br>Journal, 2012, 26, 1078.27.                                                                                                                                          | 0.5 | о         |
| 56 | Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome<br>Proliferator-activated Receptor-l̂3 Coactivator-11± (PGC-11̂±) Deacetylation following Endurance Exercise.<br>Journal of Biological Chemistry, 2011, 286, 30561-30570. | 3.4 | 156       |
| 57 | Reactive oxygen species formation during tetanic contractions in single isolated <i>Xenopus</i> myofibers. Journal of Applied Physiology, 2011, 111, 898-904.                                                                                                               | 2.5 | 34        |
| 58 | Faster O <sub>2</sub> uptake kinetics in canine skeletal muscle <i>in situ</i> after acute creatine kinase inhibition. Journal of Physiology, 2011, 589, 221-233.                                                                                                           | 2.9 | 31        |
| 59 | Acute Oxaloacetate Exposure Enhances Resistance to Fatigue in <i>in vitro</i> Mouse Soleus Muscle.<br>FASEB Journal, 2011, 25, 1104.5.                                                                                                                                      | 0.5 | 1         |
| 60 | Phenol increases intracellular [Ca2+] during twitch contractions in intact Xenopus skeletal myofibers. Journal of Applied Physiology, 2010, 109, 1384-1393.                                                                                                                 | 2.5 | 7         |
| 61 | Phenol increases twitch tension by increasing Ca 2+ transients in intact single Xenopus myofibers.<br>FASEB Journal, 2010, 24, 1048.10.                                                                                                                                     | 0.5 | 0         |
| 62 | Intracellular Po2 kinetics at different contraction frequencies in Xenopus single skeletal muscle fibers. Journal of Applied Physiology, 2007, 102, 1456-1461.                                                                                                              | 2.5 | 10        |
| 63 | Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C<br>and interacts with insulin signalling to peptide elongation in human skeletal muscle. Journal of<br>Physiology, 2007, 582, 1289-1301.                             | 2.9 | 37        |
| 64 | Skeletal muscle function with acute creatine kinase inhibition. FASEB Journal, 2007, 21, A1356.                                                                                                                                                                             | 0.5 | 1         |
| 65 | Vascular NO availability is an important determinant of impaired skeletal muscle microvascular PO2 in<br>chronic heart failure. Acta Physiologica, 2006, 188, 1-1.                                                                                                          | 3.8 | 0         |
| 66 | Fiber type differences in O <sub>2</sub> cost of force development during fatigue in isolated single<br>fibers. FASEB Journal, 2006, 20, .                                                                                                                                  | 0.5 | 0         |
| 67 | Inhibition of crossbridge cycling improves cytosolic Ca <sup>2+</sup> handling during highâ€frequency stimulation of isolated skeletal myocytes FASEB Journal, 2006, 20, A810.                                                                                              | 0.5 | Ο         |
| 68 | Effects of nitric oxide synthase inhibition byl-NAME on oxygen uptake kinetics in isolated canine<br>musclein situ. Journal of Physiology, 2005, 568, 1021-1033.                                                                                                            | 2.9 | 40        |
| 69 | Effect of contraction frequency on the contractile and noncontractile phases of muscle venous blood flow. Journal of Applied Physiology, 2003, 95, 1139-1144.                                                                                                               | 2.5 | 18        |
| 70 | Intracellular Po 2 decreases with increasing stimulation frequency in contracting singleXenopus muscle fibers. Journal of Applied Physiology, 2001, 91, 632-636.                                                                                                            | 2.5 | 22        |
| 71 | Recovery of force during postcontractile depression in singleXenopus muscle fibers. American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1469-R1475.                                                                          | 1.8 | 5         |
| 72 | Fall in intracellular P <scp>o</scp> <sub>2</sub> at the onset of contractions in <i>Xenopus</i> single skeletal muscle fibers. Journal of Applied Physiology, 2001, 90, 1871-1876.                                                                                         | 2.5 | 120       |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Preconditioning improves function and recovery of single muscle fibers during severe hypoxia and recoxygenation. American Journal of Physiology - Cell Physiology, 2001, 281, C142-C146.                               | 4.6 | 24        |
| 74 | Glucose, exercise and insulin: emerging concepts. Journal of Physiology, 2001, 535, 313-322.                                                                                                                           | 2.9 | 198       |
| 75 | Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. Journal of<br>Applied Physiology, 2000, 88, 560-566.                                                                          | 2.5 | 84        |
| 76 | Phosphorylating pathways and fatigue development in contracting Xenopus single skeletal muscle<br>fibers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278,<br>R587-R591. | 1.8 | 15        |
| 77 | Impairment of Ca <sup>2+</sup> release in single <i>Xenopus</i> muscle fibers fatigued at varied extracellular P O 2. Journal of Applied Physiology, 2000, 88, 1743-1748.                                              | 2.5 | 26        |
| 78 | Role of convective O2 delivery in determiningV˙o 2 on-kinetics in canine muscle contracting at peak V˙o<br>2. Journal of Applied Physiology, 2000, 89, 1293-1301.                                                      | 2.5 | 104       |
| 79 | Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions:<br>a <sup>31</sup> P-MRS study. Journal of Applied Physiology, 1999, 86, 1367-1373.                                                 | 2.5 | 228       |
| 80 | Differential depression of myocardial function and metabolism by lactate and H+. American Journal of<br>Physiology - Heart and Circulatory Physiology, 1999, 276, H3-H8.                                               | 3.2 | 20        |
| 81 | Phosphorescence quenching method for measurement of intracellular P O 2 in isolated skeletal<br>muscle fibers. Journal of Applied Physiology, 1999, 86, 720-724.                                                       | 2.5 | 69        |
| 82 | Effect of varied extracellular P O 2 on muscle performance inXenopus single skeletal muscle fibers.<br>Journal of Applied Physiology, 1999, 86, 1812-1816.                                                             | 2.5 | 29        |
| 83 | Rapid force recovery in contracting skeletal muscle after brief ischemia is dependent on O <sub>2</sub> availability. Journal of Applied Physiology, 1999, 87, 2225-2229.                                              | 2.5 | 24        |
| 84 | Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O <sub>2</sub> availability. Journal of Applied Physiology, 1999, 86, 2013-2018.                                                   | 2.5 | 260       |
| 85 | Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E397-E402.                                                | 3.5 | 78        |
| 86 | Bioenergetics of contracting skeletal muscle after partial reduction of blood flow. Journal of Applied Physiology, 1998, 84, 1882-1888.                                                                                | 2.5 | 39        |
| 87 | Phosphocreatine hydrolysis during submaximal exercise: the effect of F I O 2. Journal of Applied Physiology, 1998, 85, 1457-1463.                                                                                      | 2.5 | 124       |
| 88 | Faster adjustment of O2delivery does not affect V˙o 2 on-kinetics in isolated in situ canine muscle.<br>Journal of Applied Physiology, 1998, 85, 1394-1403.                                                            | 2.5 | 220       |
| 89 | Peripheral O2 diffusion does not affect V˙o 2 on-kinetics in isolated in situ canine muscle. Journal of<br>Applied Physiology, 1998, 85, 1404-1412.                                                                    | 2.5 | 145       |