Hiroshi Kondoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9037528/publications.pdf

Version: 2024-02-01

304743 302126 1,724 78 22 h-index citations papers

g-index 79 79 79 2346 docs citations times ranked citing authors all docs

39

#	Article	IF	Citations
1	Ligand effects on surface oxide at RhPd(100) alloy surfaces: A density functional theory calculation study. Surface Science, 2022, 716, 121958.	1.9	3
2	A newly designed compact CEY-XAFS cell in the soft X-ray region and its application to surface XAFS measurements under ambient-pressure conditions without photoinduced side effects. Physical Chemistry Chemical Physics, 2022, 24, 2988-2996.	2.8	2
3	Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors. Synchrotron Radiation News, 2022, 35, 19-25.	0.8	1
4	Substrate Effect of Ir and Rh on Surface ReO _{<i>x</i>} Species under a Hydrogen Atmosphere Studied by NAP-XPS. Journal of Physical Chemistry C, 2022, 126, 11544-11552.	3.1	2
5	Detailed Characterization of MoO _{<i>x</i>} -Modified Rh Metal Particles by Ambient-Pressure XPS and DFT Calculations. Journal of Physical Chemistry C, 2021, 125, 4540-4549.	3.1	21
6	In situ AP-XPS study on reduction of oxidized Rh catalysts under CO exposure and catalytic reaction conditions. Journal Physics D: Applied Physics, 2021, 54, 204005.	2.8	4
7	Formation and Behavior of Carbonates on Ag(110) in the Presence of Ethylene and Oxygen. Journal of Physical Chemistry C, 2021, 125, 9032-9037.	3.1	4
8	<i>In Situ</i> Observation of Molecular Processes at Surfaces and Interfaces by Soft X-Ray Absorption Spectroscopy. Vacuum and Surface Science, 2021, 64, 212-217.	0.1	0
9	Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using <i>operando</i> UV/visible and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 23280-23287.	2.8	6
10	Operando observations of reactive metal–Oxide structure formation on the Pt3Ni(111) surface at near-ambient pressure. Journal of Electron Spectroscopy and Related Phenomena, 2020, 238, 146857.	1.7	6
11	Promotional Effect of La in the Three-Way Catalysis of La-Loaded Al ₂ O ₃ . ACS Catalysis, 2020, 10, 1010-1023.	11.2	46
12	Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details. Analytical Sciences, 2020, 36, 35-39.	1.6	9
13	Orientation-Dependent Hindrance to the Oxidation of Pd–Au Alloy Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 9249-9254.	4.6	6
14	Initial oxidation of GaAs(100) under near-realistic environments revealed by <i>in situ</i> AP-XPS. Chemical Communications, 2020, 56, 14905-14908.	4.1	4
15	<i>In situ</i> AP-XPS analysis of a Pt thin-film sensor for highly sensitive H ₂ detection. Chemical Communications, 2020, 56, 10147-10150.	4.1	12
16	<i>Operando</i> Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 23611-23618.	3.1	22
17	How Rh surface breaks CO2 molecules under ambient pressure. Nature Communications, 2020, 11, 5649.	12.8	24
18	 <i>Operando</i> study of Pd(100) surface during CO oxidation using ambient pressure x-ray photoemission spectroscopy. AIP Advances, 2019, 9, .	1.3	10

#	Article	IF	CITATIONS
19	Formation of Carbonate on Ag(111) under Exposure to Ethylene and Oxygen Gases Evidenced by Near Ambient Pressure XPS and NEXAFS. Chemistry Letters, 2019, 48, 159-162.	1.3	16
20	Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. Journal of Physical Chemistry C, 2019, 123, 5336-5344.	3.1	52
21	Ambient Pressure X-Ray Photoelectron Spectroscopy. , 2018, , 15-19.		0
22	Dehydration Pathway for the Dissociation of Gas-Phase Formic Acid on Pt(111) Surface Observed via Ambient-Pressure XPS. Journal of Physical Chemistry C, 2018, 122, 2064-2069.	3.1	16
23	Element selective oxidation on Rh–Pd bimetallic alloy surfaces. Physical Chemistry Chemical Physics, 2018, 20, 28419-28424.	2.8	3
24	Chemical state changes of Nafion in model polymer electrolyte fuel cell under oxygen/hydrogen gas atmosphere observed by S-K XANES spectroscopy. RSC Advances, 2018, 8, 38204-38209.	3.6	11
25	Operando NAP-XPS Observation and Kinetics Analysis of NO Reduction over Rh(111) Surface: Characterization of Active Surface and Reactive Species. ACS Catalysis, 2018, 8, 11663-11670.	11.2	25
26	Adsorbate-driven reactive interfacial Pt-NiO $\langle sub \rangle 1\hat{a}^{2} \langle i \rangle \times \langle i \rangle \langle sub \rangle$ nanostructure formation on the Pt $\langle sub \rangle 3 \langle sub \rangle Ni(111)$ alloy surface. Science Advances, 2018, 4, eaat 3151.	10.3	76
27	Operando Observation of NO Reduction by CO on Ir(111) Surface Using NAP-XPS and Mass Spectrometry: Dominant Reaction Pathway to N ₂ Formation under Near Realistic Conditions. Journal of Physical Chemistry C, 2017, 121, 1763-1769.	3.1	19
28	Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 255-260.	3.1	15
29	Catalytic CO oxidation over Pd ₇₀ Au ₃₀ (111) alloy surfaces: spectroscopic evidence for Pd ensemble dependent activity. Chemical Communications, 2017, 53, 12657-12660.	4.1	4
30	Chemical states of surface oxygen during CO oxidation on Pt($1\hat{a}\in\%.1\hat{a}\in\%.0$) surface revealed by ambient pressure XPS. Journal of Physics Condensed Matter, 2017, 29, 464001.	1.8	16
31	In Situ Observations of Oxygen Evolution Cocatalysts on Photoelectrodes by X-ray Absorption Spectroscopy: Comparison between Cobalt-Phosphate and Cobalt-Borate. Electrochemistry, 2016, 84, 779-783.	1.4	14
32	In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity. Physical Chemistry Chemical Physics, 2016, 18, 25183-25190.	2.8	17
33	Structural Relationship between CoO ₆ Cluster and Phosphate Species in a Cobalt–Phosphate Water Oxidation Catalyst Investigated by Co and P K-edge XAFS. Chemistry Letters, 2016, 45, 277-279.	1.3	21
34	CO Adsorption on Pd–Au Alloy Surface: Reversible Adsorption Site Switching Induced by High-Pressure CO. Journal of Physical Chemistry C, 2016, 120, 416-421.	3.1	15
35	In situ analysis of catalytically active Pd surfaces for CO oxidation with near ambient pressure XPS. Catalysis Today, 2016, 260, 14-20.	4.4	44
36	<i>In-situ</i> observations of catalytic surface reactions with soft x-rays under working conditions. Journal of Physics Condensed Matter, 2015, 27, 083003.	1.8	34

#	Article	IF	Citations
37	High-Pressure NO-Induced Mixed Phase on Rh(111): Chemically Driven Replacement. Journal of Physical Chemistry C, 2015, 119, 3033-3039.	3.1	12
38	Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 19279-19286.	3.1	80 Overloch 10 T
39		1.9	11
40	Surface Science, 2014, 621, 128-132 <scp>I</scp> n Situ Observation of Model Catalysts under Reaction Conditions Using <scp>X</scp> â€ray Coreâ€Level Spectroscopy. Chemical Record, 2014, 14, 806-818.	5.8	9
41	A high-pressure-induced dense CO overlayer on a $Pt(111)$ surface: a chemical analysis using in situ near ambient pressure XPS. Physical Chemistry Chemical Physics, 2014, 16, 23564-23567.	2.8	40
42	Photoexcited Hole Transfer to a MnOxCocatalyst on a SrTiO3Photoelectrode during Oxygen Evolution Studied by In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 24302-24309.	3.1	42
43	Electrochromic Characteristics of a Nickel Borate Thin Film Investigated by In Situ XAFS and UV/vis Spectroscopy. Electrochemistry, 2014, 82, 355-358.	1.4	13
44	Structure and Photo-Induced Charge Transfer of Pyridine Molecules Adsorbed on TiO2(110): A NEXAFS and Core-Hole-Clock Study. Electrochemistry, 2014, 82, 341-345.	1.4	2
45	In Situ XAFS Study of the Photoinduced Potential Shift of a MnO <i>x</i> Cocatalyst on a SrTiO3 Photocatalyst. Chemistry Letters, 2014, 43, 1725-1727.	1.3	8
46	The Development of Ambient Pressure X-Ray Photoelectron Spectroscopy and Its Application to Surface Science., 2014, , 197-229.		2
47	Photoelectron spectroscopic study of CO and NO adsorption on Pd(100) surface under ambient pressure conditions. Surface Science, 2013, 615, 33-40.	1.9	15
48	In Situ Photoemission Observation of Catalytic CO Oxidation Reaction on Pd(110) under Near-Ambient Pressure Conditions: Evidence for the Langmuir–Hinshelwood Mechanism. Journal of Physical Chemistry C, 2013, 117, 20617-20624.	3.1	26
49	In situ observation of carrier transfer in the Mn-oxide/Nb:SrTiO3 photoelectrode by X-ray absorption spectroscopy. Chemical Communications, 2013, 49, 7848.	4.1	32
50	Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU. Review of Scientific Instruments, 2012, 83, 023109.	1.3	52
51	Molecular orientation change during adsorption of NO and N2O on Ir(111) observed by real-time wavelength-dispersive x-ray absorption spectroscopy with polarization switching. Applied Physics Letters, 2012, 101, .	3.3	3
52	In Situ Ambient Pressure XPS Study of CO Oxidation Reaction on $Pd(111)$ Surfaces. Journal of Physical Chemistry C, 2012, 116, 18691-18697.	3.1	135
53	Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3182-3187.	4.6	67
54	Real-time observation of CO oxidation reaction on $Ir(111)$ surface at 33 ms resolution by means of wavelength-dispersive near-edge x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2011, 99, .	3.3	16

#	Article	IF	Citations
55	Mechanism of Ammonia Formation on Rh(111) Studied by Dispersive Near-Edge X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 2164-2170.	3.1	7
56	Chemical Reactions on Platinum-Group Metal Surfaces Studied by Synchrotron-Radiation-Based Spectroscopy. Journal of the Vacuum Society of Japan, 2009, 52, 73-79.	0.3	2
57	In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surface Science, 2009, 603, L35-L38.	1.9	33
58	Pretreatment Dependence of Adsorption Properties of Merocyanine Dye at Rutile (110) and (100) TiO ₂ Surfaces Studied by C K-Edge NEXAFS. Journal of Physical Chemistry C, 2009, 113, 17254-17261.	3.1	9
59	Mechanism of N + NO Reaction on Rh(111) Surfaces: A precursor-Mediated Reaction. Journal of Physical Chemistry C, 2009, 113, 13257-13265.	3.1	26
60	Geometric and electronic structures of NO dimer layers on Rh(111) studied with near edge x-ray absorption fine structure spectroscopy: Experiment and theory. Journal of Chemical Physics, 2007, 127, 024701.	3.0	10
61	CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. Journal of Chemical Physics, 2007, 126, 044704.	3.0	44
62	N+NO Reaction on Rh(111) Surfaces Studied with Fast Near-Edge X-ray Absorption Fine Structure Spectroscopy:Â Role of NO Dimer as an Extrinsic Precursor. Journal of Physical Chemistry B, 2006, 110, 25578-25581.	2.6	16
63	Mechanism of CO oxidation reaction on O-covered Pd(111) surfaces studied with fast x-ray photoelectron spectroscopy: Change of reaction path accompanying phase transition of O domains. Journal of Chemical Physics, 2006, 124, 224712.	3.0	50
64	Growth of nanographite on Pt(111) and its edge state. Applied Physics Letters, 2006, 88, 153126.	3.3	56
65	Report of the 25th SSSJ Annual Meeting. Hyomen Kagaku, 2006, 27, 123-125.	0.0	0
66	Mechanism of Water Formation on $Pt(111)$ Revealed by Time-resolved NEXAFS Experiment and Kinetic Monte Carlo Simulation. Hyomen Kagaku, 2005, 26, 378-384.	0.0	1
67	Water formation reaction on Pt(111): Role of the proton transfer. Journal of Chemical Physics, 2005, 122, 204704.	3.0	17
68	Metal-induced gap states in epitaxial organic-insulator/metal interfaces. Physical Review B, 2005, 72, .	3.2	19
69	Self-Assembly of Co Nanoplatelets into Spheres:  Synthesis and Characterization. Chemistry of Materials, 2005, 17, 3994-3996.	6.7	117
70	Magnetic Properties and Fabrication of Monodisperse FePd Nanoparticles. Materials Research Society Symposia Proceedings, 2004, 818, 206.	0.1	0
71	Towards 3-D Spherical Self-Assembly by Ternary Surfactant Combinations: The Case of Magnetite Nanoparticles. European Journal of Inorganic Chemistry, 2004, 2004, 1169-1173.	2.0	39
72	Water formation reaction on $Pt(111)$: Near edge x-ray absorption fine structure experiments and kinetic Monte Carlo simulations. Journal of Chemical Physics, 2003, 119, 9233-9241.	3.0	21

#	Article	IF	CITATIONS
73	Structure Analyses of Methylthiolate Adsorbed on ${\rm Au}(111)$ by Photoelectron Diffraction. Hyomen Kagaku, 2003, 24, 448-454.	0.0	1
74	Structure of 2-Mercaptomethylthiophene Monolayers on Au(111). Molecular Crystals and Liquid Crystals, 2002, 377, 45-48.	0.9	2
75	A soft X-ray beamline for surface chemistry at the Photon Factory. Journal of Electron Spectroscopy and Related Phenomena, 2002, 124, 151-164.	1.7	84
76	Studies on Surface and Interface with X-ray Absorption Fine Structure (XAFS). XAFS Study of Self-Assembled Monolayers Hyomen Kagaku, 2002, 23, 351-358.	0.0	1
77	Low temperature electrochemical synthesis of titanium nitride. Chemical Communications, 2001 , , $579-580$.	4.1	21
78	Scanning Tunneling Microscopy Observations of [7]Thiahelicene Adsorbed on Au(111). Molecular Crystals and Liquid Crystals, 1999, 337, 273-276.	0.3	3