Neil J Shirtcliffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9037411/publications.pdf

Version: 2024-02-01

		117571	182361
55	6,964 citations	34	51
papers	citations	h-index	g-index
FO	Γ0	Ε0	7127
58	58	58	7137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Progess in superhydrophobic surface development. Soft Matter, 2008, 4, 224-240.	1.2	1,447
2	An introduction to superhydrophobicity. Advances in Colloid and Interface Science, 2010, 161, 124-138.	7.0	530
3	Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Advanced Materials, 2004, 16, 1929-1932.	11.1	488
4	Intrinsically Superhydrophobic Organosilica Solâ^'Gel Foams. Langmuir, 2003, 19, 5626-5631.	1.6	410
5	Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir, 2005, 21, 11053-11060.	1.6	361
6	Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir, 2004, 20, 10146-10149.	1.6	329
7	Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 2005, 21, 937-943.	1.6	279
8	Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties. Soft Matter, 2010, 6, 714-719.	1.2	250
9	Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. Journal of Colloid and Interface Science, 1999, 211, 122-129.	5.0	207
10	Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1316-1323.	4.0	204
11	Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on A Chip, 2008, 8, 582.	3.1	179
12	Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, , 3135.	2.2	174
13	The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. Journal of Micromechanics and Microengineering, 2004, 14, 1384-1389.	1.5	161
14	Super-hydrophobic and super-wetting surfaces: Analytical potential?. Analyst, The, 2004, 129, 284.	1.7	155
15	Plastron properties of a superhydrophobic surface. Applied Physics Letters, 2006, 89, 104106.	1.5	153
16	The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1203-1217.	2.4	151
17	Electrowetting of liquid marbles. Journal Physics D: Applied Physics, 2007, 40, 20-24.	1.3	105
18	Electrowetting of Nonwetting Liquids and Liquid Marbles. Langmuir, 2007, 23, 918-924.	1.6	101

#	Article	IF	CITATIONS
19	Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Materials Research Bulletin, 2007, 42, 281-287.	2.7	95
20	Electrowetting on superhydrophobic SU-8 patterned surfaces. Sensors and Actuators A: Physical, 2006, 130-131, 189-193.	2.0	92
21	Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. European Journal of Soil Science, 2005, 56, 445-452.	1.8	88
22	Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15, 309-326.	1.0	88
23	Learning from Superhydrophobic Plants: The Use of Hydrophilic Areas on Superhydrophobic Surfaces for Droplet Controlâ€Part of the "Langmuir 25th Year: Wetting and superhydrophobicity―special issue Langmuir, 2009, 25, 14121-14128.	1.6	82
24	Synthesis of SrCoxTixFe(12â^2x)O19 through sol–gel auto-ignition and its characterisation. Journal of Magnetism and Magnetic Materials, 2005, 292, 100-107.	1.0	71
25	A lichen protected by a super-hydrophobic and breathable structure. Journal of Plant Physiology, 2006, 163, 1193-1197.	1.6	61
26	Critical conditions for the wetting of soils. Applied Physics Letters, 2006, 89, 094101.	1.5	59
27	Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013, 38, 1225-1233.	1.2	58
28	Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters, 2007, 90, 054110.	1.5	55
29	Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics, 2007, 103, 112-117.	2.0	53
30	Dynamic wetting and spreading and the role of topography. Journal of Physics Condensed Matter, 2009, 21, 464122.	0.7	48
31	Quantification of Surface-Bound Proteins by Fluorometric Assay: Comparison with Quartz Crystal Microbalance and Amido Black Assay. Journal of Physical Chemistry B, 2006, 110, 20572-20579.	1.2	46
32	Decoupling of the Liquid Response of a Superhydrophobic Quartz Crystal Microbalance. Langmuir, 2007, 23, 9823-9830.	1.6	45
33	Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films, 2004, 446, 61-71.	0.8	40
34	Chemical structure and morphology of thin, organo-silicon plasma-polymer films as a function of process parameters. Surface and Coatings Technology, 2001, 142-144, 1121-1128.	2,2	39
35	Passive water control at the surface of a superhydrophobic lichen. Planta, 2011, 234, 1267-1274.	1.6	34
36	Implications of ideas on superâ€hydrophobicity for water repellent soil. Hydrological Processes, 2007, 21, 2229-2238.	1.1	29

#	Article	IF	Citations
37	Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces. PLoS ONE, 2012, 7, e36983.	1.1	28
38	Transitions of waterâ€drop impact behaviour on hydrophobic and hydrophilic particles. European Journal of Soil Science, 2013, 64, 324-333.	1.8	27
39	Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil. Environmental Science & Echnology, 2011, 45, 9666-9670.	4.6	26
40	Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. Beilstein Journal of Nanotechnology, 2011, 2, 145-151.	1.5	19
41	In situ infrared spectroscopic studies of ultrathin inorganic film growth on zinc in non-polymerizing cold plasmas. Surface and Interface Analysis, 2003, 35, 799-804.	0.8	15
42	A preliminary study of the surface properties of earthworms and their relations to non-stain behaviour. Journal of Bionic Engineering, 2010, 7, 13-18.	2.7	12
43	Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs. Chemical Engineering Research and Design, 2016, 110, 200-208.	2.7	11
44	Deposition of clays onto a rotating, electrochemical, quartz crystal microbalance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 277-285.	2.3	10
45	Plastron Respiration Using Commercial Fabrics. Materials, 2014, 7, 484-495.	1.3	7
46	The effect of SU-8 patterned surfaces on the response of the quartz crystal microbalance. Sensors and Actuators A: Physical, 2005, 123-124, 73-76.	2.0	6
47	The Self Assembly of Superhydrophobic Copper Thiolate Films on Copper in Thiol Solutions. Zeitschrift Fur Physikalische Chemie, 2012, 226, 187-200.	1.4	6
48	Electrochemical detection of adrenaline and hydrogen peroxide on carbon nanotubes. Surface Innovations, 2022, 10, 379-386.	1.4	5
49	Sensor response of superhydrophobic quartz crystal resonators. , 2008, , .		4
50	The Effect of Roughness Geometry on Superhydrophobicity and Related Phenomena., 2019,, 291-308.		4
51	Comments on "Chitosan-Catalyzed Aggregation during the Biomimetic Synthesis of Silica Nanoparticles― Chemistry of Materials, 2006, 18, 1711-1712.	3.2	3
52	Hydrophobic Smart Material for Water Transport and Collection. , 2012, , 49-55.		3
53	Assembl y of Poly-3-Hexylthiophene Nano-Crystallites into Low Dimensional Structures Using Indandione Derivatives. Nanomaterials, 2013, 3, 107-116.	1.9	3
54	Natural and Artificial Hybrid Biomaterials. , 0, , 255-299.		2

#	Article	IF	CITATIONS
55	Underwater spiders. New Scientist, 2011, 211, 31.	0.0	0