
Ip Chubarenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The physical oceanography of the transport of floating marine debris. Environmental Research Letters, 2020, 15, 023003.	2.2	469
2	On some physical and dynamical properties of microplastic particles in marine environment. Marine Pollution Bulletin, 2016, 108, 105-112.	2.3	426
3	Toward the Integrated Marine Debris Observing System. Frontiers in Marine Science, 2019, 6, .	1.2	178
4	Secondary Microplastics Generation in the Sea Swash Zone With Coarse Bottom Sediments: Laboratory Experiments. Frontiers in Marine Science, 2018, 5, .	1.2	144
5	Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion. Science of the Total Environment, 2017, 599-600, 560-571.	3.9	135
6	Microplastics in sea coastal zone: Lessons learned from the Baltic amber. Environmental Pollution, 2017, 224, 243-254.	3.7	97
7	On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments. Marine Pollution Bulletin, 2020, 150, 110726.	2.3	95
8	Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Science of the Total Environment, 2018, 628-629, 1340-1351.	3.9	77
9	Anthropogenic microlitter in the Baltic Sea water column. Marine Pollution Bulletin, 2018, 129, 918-923.	2.3	60
10	Transport of marine microplastic particles: why is it so difficult to predict?. Anthropocene Coasts, 2019, 2, 293-305.	0.6	54
11	Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecological Modelling, 2001, 138, 87-100.	1.2	48
12	From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tide-less coast. Marine Pollution Bulletin, 2020, 156, 111198.	2.3	40
13	Salinity dynamics of the Baltic Sea. Earth System Dynamics, 2022, 13, 373-392.	2.7	34
14	Behavior of Microplastics in Coastal Zones. , 2018, , 175-223.		31
15	Marine macrophytes retain microplastics. Marine Pollution Bulletin, 2021, 171, 112738.	2.3	31
16	Data on microplastic contamination of the Baltic Sea bottom sediment samples in 2015–2016. Data in Brief, 2020, 28, 104887.	0.5	26
17	Thin synthetic fibers sinking in still and convectively mixing water: laboratory experiments and projection to oceanic environment. Environmental Pollution, 2021, 288, 117714.	3.7	24
18	On the helical flow of Langmuir circulation — Approaching the process of suspension freezing. Cold Regions Science and Technology, 2009, 56, 50-57.	1.6	18

IP CHUBARENKO

#	Article	IF	CITATIONS
19	On contribution of horizontal and intra-layer convection to the formation of the Baltic Sea cold intermediate layer. Ocean Science, 2010, 6, 285-299.	1.3	17
20	Marine Litter Pollution in Baltic Sea Beaches – Application of the Sand Rake Method. Frontiers in Environmental Science, 2020, 8, .	1.5	17
21	Laboratory modeling of the structure of a thermal bar and related circulation in a basin with a sloping bottom. Oceanology, 2008, 48, 327-339.	0.3	16
22	Horizontal convective water exchange above a sloping bottom: The mechanism of its formation and an analysis of its development. Oceanology, 2010, 50, 166-174.	0.3	16
23	Structure of unsteady overflow in the SÅ,upsk Furrow of the Baltic Sea. Journal of Geophysical Research, 2012, 117, .	3.3	15
24	Microplastic contamination of sandy beaches of national parks, protected and recreational areas in southern parts of the Baltic Sea. Marine Pollution Bulletin, 2021, 173, 113002.	2.3	15
25	Wind-driven current simulations around the Island Mainau (Lake Constance). Ecological Modelling, 2001, 138, 55-73.	1.2	13
26	Investigations of plastic contamination of seawater, marine and coastal sediments in the Russian seas: a review. Environmental Science and Pollution Research, 2021, 28, 32264-32281.	2.7	13
27	Physical processes behind interactions of microplastic particles with natural ice. Environmental Research Communications, 2022, 4, 012001.	0.9	13
28	Thermally driven interaction of the littoral and limnetic zones by autumnal cooling processes. Journal of Limnology, 2005, 64, 31.	0.3	12
29	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , .	0.1	12
30	Spring thermocline formation in the coastal zone of the southeastern Baltic Sea based on field data in 2010–2013. Oceanology, 2017, 57, 632-638.	0.3	12
31	From macro to micro: dataset on plastic contamination along and across a sandy tide-less coast (the) Tj ETQq1 🕻	1 0.78431 0.5	4 rgBT /Over
32	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , .	0.1	12
33	Autumn physical limnological experimental campaign in the Island Mainau littoral zone of Lake Constance. Journal of Limnology, 2003, 62, 115.	0.3	11
34	Structure and evolution of the cold intermediate layer in the southeastern part of the Baltic Sea by the field measurement data of 2004–2008. Oceanology, 2015, 55, 25-35.	0.3	11
35	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , .	0.1	11
36	Cold intermediate layer of the Baltic Sea: Hypothesis of the formation of its core. Progress in Oceanography, 2018, 167, 1-10.	1.5	9

IP CHUBARENKO

#	Article	IF	CITATIONS
37	Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them. Pollutants, 2021, 1, 156-168.	1.0	8
38	The development of seasonal structural fronts in the Baltic Sea after winters of varying severity. Climate Research, 2011, 48, 73-84.	0.4	8
39	Microplastics distribution in bottom sediments of the Baltic Sea Proper. Marine Pollution Bulletin, 2022, 179, 113743.	2.3	7
40	Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island. Annales Geophysicae, 2000, 18, 706-727.	0.6	6
41	Upwelling or differential cooling? Analysis of satellite SST images of the Southeastern Baltic Sea. Water Resources, 2017, 44, 69-77.	0.3	6
42	Features of the distribution of microplastics on sandy beaches of the Kaliningrad region (the Baltic) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
43	Coastal cooling/heating events: Laboratory experiments. Acta Geophysica, 2007, 55, 56-64.	1.0	4
44	On features of structure of bottom gravity current frontal zone. Oceanology, 2010, 50, 28-35.	0.3	4
45	Water dynamics above the sloping bottom due to an intense summer heating. Russian Meteorology and Hydrology, 2013, 38, 44-52.	0.2	4
46	On the fine structure of the thermal bar front. Environmental Fluid Mechanics, 2012, 12, 161-183.	0.7	3
47	Down-slope cascading modulated by day/night variations of solar heating. Journal of Limnology, 2013, 72, 19.	0.3	3
48	Microplastics Migrations in Sea Coastal Zone: Baltic Amber as an Example. , 2017, , 15-16.		3
49	Spring cold water intrusions as the beginningof the cold intermediate layer formation in the Baltic sea. Estuarine, Coastal and Shelf Science, 2021, 250, 107141.	0.9	3
50	Decision Support Systems and Tools. NATO Security Through Science Series C: Environmental Security, 2008, , 455-481.	0.1	3
51	Horizontal exchange across the thermal bar front: laboratory and numerical modelling. Water Quality Research Journal of Canada, 2012, 47, 436-450.	1.2	2
52	Spatiotemporal variability of thermal front features in the Baltic Sea 2010–2011. Oceanology, 2012, 52, 728-734.	0.3	2
53	How to differentiate between coastal cooling and upwelling events on SST images?. , 2014, , .		2
54	Marine Litter in the Russian Gulf of Finland and South-East Baltic: Application of Different Methods of Beach Sand Sampling. Handbook of Environmental Chemistry, 2021, , 461-485.	0.2	2

IP CHUBARENKO

#	Article	IF	CITATIONS
55	How to differentiate between coastal cooling and upwelling events on SST images?. , 2014, , .		2
56	Phenomenological Coefficients of Water. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 389-418.	0.1	1
57	Sediment budget of the Vistula Lagoon: The equilibrium or evolution?. , 2004, , .		Ο
58	Seasonal thermally induced structural front in a Basin with horizontal and vertical salinity stratification. , 2004, , .		0
59	PHYSICAL PROCESSES IN LAGOONS. , 2007, , 55-81.		Ο
60	Barotropic and Baroclinic Basin-Scale Wave Dynamics Affected by the Rotation of the Earth. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 155-195.	0.1	0
61	A Brief Review of the Basic Thermomechanical Laws of Classical Physics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 67-82.	0.1	Ο
62	Mathematical Prerequisites. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 25-66.	0.1	0
63	Vertical Structure of Wind-Induced Currents in Homogeneous and Stratified Waters. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 319-387.	0.1	Ο
64	Conservation of Angular Momentum–Vorticity. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 157-184.	0.1	0
65	Turbulence Modelling. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 185-220.	0.1	Ο
66	Introduction to Linear Waves. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 221-261.	0.1	0
67	Fundamental Equations of Lake Hydrodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 83-155.	0.1	0
68	Topographic RossbyWaves in Basins of Simple Geometry. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 399-445.	0.1	0
69	A Class of Chrystal-Type Equations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 537-626.	0.1	0
70	Topographic Waves in Enclosed Basins: Fundamentals and Observations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 355-398.	0.1	0
71	Measuring Methods and Techniques. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 285-306.	0.1	0
72	Sediment Transport in Alluvial Systems. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 487-579.	0.1	0

#	Article	IF	CITATIONS
73	Response of a Stratified Alpine Lake to External Wind Fields: Numerical Prediction and Comparison with Field Observations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 35-90.	0.1	0
74	Instruments and Sensors. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 213-283.	0.1	0
75	Barotropic Wind-Induced Motions in a Shallow Lake. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 5-34.	0.1	0
76	microplastics, numerical modelling, the Baltic Sea, anthropogenic pollution. , 2017, , .		0
77	BALTIC AMBER MIGRATIONS AS A MODEL OF MICROPLASTICS BEHAVIOR IN THE SEA COASTAL ZONE. , 2017, , .		0