Willem de Haan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillatory Activity of the Hippocampus in Prodromal Alzheimer's Disease: A Source-Space Magnetoencephalography Study. Journal of Alzheimer's Disease, 2022, , 1-17.	1.2	4
2	Network-level permutation entropy of resting-state MEG recordings: A novel biomarker for early-stage Alzheimer's disease?. Network Neuroscience, 2022, 6, 382-400.	1.4	8
3	Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Research Reviews, 2021, 69, 101372.	5.0	90
4	EEG slowing in predementia Alzheimer's disease is compatible with neuronal hyperactivity: A multiscale computational modeling study Alzheimer's and Dementia, 2021, 17 Suppl 3, e053535.	0.4	0
5	What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiology of Aging, 2020, 85, 58-73.	1.5	150
6	Neuronal network hyperactivity in computational models of AD. Alzheimer's and Dementia, 2020, 16, e040407.	0.4	0
7	MEG detects abnormal hippocampal activity in amyloidâ€positive MCI. Alzheimer's and Dementia, 2020, 16, e040796.	0.4	2
8	A loss of neuronal inhibition best explains EEG abnormalities in preclinical Alzheimer's disease: A multiscale computational modeling study. Alzheimer's and Dementia, 2020, 16, e043262.	0.4	0
9	The clinical promise of biomarkers of synapse damage or loss in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 21.	3.0	183
10	Human brain connectivity: Clinical applications for clinical neurophysiology. Clinical Neurophysiology, 2020, 131, 1621-1651.	0.7	68
11	The road ahead in clinical network neuroscience. Network Neuroscience, 2019, 3, 969-993.	1.4	37
12	Drooping Eyelid After Vomiting. JAMA Neurology, 2019, 76, 862.	4.5	0
13	P3â€342: INFLUENCE OF NETWORK CONSTRUCTION METHODS ON PATH LENGTH VALUES IN ALZHEIMER'S DISEASE: A MULTIâ€STUDY ANALYSIS OF MRI CONNECTIVITY STUDIES. Alzheimer's and Dementia, 2018, 14, P1214.	0.4	0
14	ICâ€Pâ€032: INFLUENCE OF NETWORK CONSTRUCTION METHODS ON PATH LENGTH VALUES IN ALZHEIMER'S DISEASE: A MULTIâ€6TUDY ANALYSIS OF MRI CONNECTIVITY STUDIES. Alzheimer's and Dementia, 2018, 14, P36.	0.4	0
15	Strong Relation Between an EEG Functional Connectivity Measure and Postmenstrual Age: A New Potential Tool for Measuring Neonatal Brain Maturation. Frontiers in Human Neuroscience, 2018, 12, 286.	1.0	8
16	The Virtual Trial. Frontiers in Neuroscience, 2017, 11, 110.	1.4	5
17	Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer's disease. PLoS Computational Biology, 2017, 13, e1005707.	1.5	57
18	Alzheimer's disease patients not carrying the apolipoprotein E Îμ4 allele show more severe slowing of oscillatory brain activity. Neurobiology of Aging, 2013, 34, 2158-2163.	1.5	19

Willem de Haan

#	Article	IF	CITATIONS
19	Alzheimer's disease: connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 2013, 34, 2023-2036.	1.5	355
20	The effect of neuronal activity and connectivity on Alzheimer's disease: a new direction and its implications for future treatment strategies. Neurodegenerative Disease Management, 2013, 3, 93-95.	1.2	0
21	Single-Subject Grey Matter Graphs in Alzheimer's Disease. PLoS ONE, 2013, 8, e58921.	1.1	107
22	Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage. Frontiers in Aging Neuroscience, 2013, 5, 58.	1.7	143
23	Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiology of Aging, 2012, 33, 1008.e25-1008.e31.	1.5	34
24	Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia. BMC Neuroscience, 2012, 13, 85.	0.8	24
25	Disruption of Functional Brain Networks in Alzheimer's Disease: What Can We Learn from Graph Spectral Analysis of Resting-State Magnetoencephalography?. Brain Connectivity, 2012, 2, 45-55.	0.8	85
26	Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer's disease. NeuroImage, 2012, 59, 3085-3093.	2.1	190
27	Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease. PLoS Computational Biology, 2012, 8, e1002582.	1.5	336
28	Functional network disruption in the degenerative dementias. Lancet Neurology, The, 2011, 10, 829-843.	4.9	422
29	The correlation of metrics in complex networks with applications in functional brain networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P11018.	0.9	67
30	Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neuroscience, 2009, 10, 101.	0.8	317
31	Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 2009, 132, 213-224.	3.7	895
32	Resting-State Oscillatory Brain Dynamics in Alzheimer Disease. Journal of Clinical Neurophysiology, 2008, 25, 187-193.	0.9	75