


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036817/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microbial enzymes for the recycling of recalcitrant petroleumâ€based plastics: how far are we?.<br>Microbial Biotechnology, 2017, 10, 1308-1322.                                                                                   | 2.0  | 503       |
| 2  | Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011, 44, 4632-4640.                                                                     | 2.2  | 298       |
| 3  | New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading<br>Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied and Environmental<br>Microbiology, 2018, 84, .         | 1.4  | 259       |
| 4  | Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 2020, 3, 867-871.                                                                                                           | 16.1 | 233       |
| 5  | Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate.<br>Microbial Biotechnology, 2017, 10, 1302-1307.                                                                                  | 2.0  | 215       |
| 6  | Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Applied Microbiology and Biotechnology, 2014, 98, 7815-7823.                                           | 1.7  | 191       |
| 7  | Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging<br>Determined by Their Polymer Microstructures. Advanced Science, 2019, 6, 1900491.                                                       | 5.6  | 181       |
| 8  | Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 2020, 258, 113658.                                                                                                             | 3.7  | 174       |
| 9  | Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering, 2016, 113, 1658-1665.                                               | 1.7  | 169       |
| 10 | Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate<br>nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochemical Engineering Journal,<br>2015, 93, 222-228.                 | 1.8  | 164       |
| 11 | Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 2021, 66, 167-178.                                                                                                                                     | 3.6  | 151       |
| 12 | A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the<br>biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 2016, 11,<br>1082-1087.                         | 1.8  | 145       |
| 13 | Functional characterization and structural modeling of synthetic polyester-degrading hydrolases<br>from Thermomonospora curvata. AMB Express, 2014, 4, 44.                                                                         | 1.4  | 117       |
| 14 | Ca <sup>2+</sup> and Mg <sup>2+</sup> binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from <i>Thermobifida fusca</i> .<br>Biotechnology Journal, 2015, 10, 592-598. | 1.8  | 117       |
| 15 | Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases. Polymers, 2017, 9, 65.                                                                                                                                    | 2.0  | 116       |
| 16 | Thermophilic whole ell degradation of polyethylene terephthalate using engineered <i>Clostridium thermocellum</i> . Microbial Biotechnology, 2021, 14, 374-385.                                                                    | 2.0  | 106       |
| 17 | Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis, 2022, 12, 3382-3396.                                                                                                                                            | 5.5  | 104       |
| 18 | Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnology<br>Advances, 2021, 48, 107730.                                                                                                  | 6.0  | 95        |

Ren Wei

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes, 2019, 10, 373.                                                                                                                               | 1.0 | 94        |
| 20 | A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio, 2016, 6, 425-432.                           | 1.0 | 91        |
| 21 | Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nature Communications, 2019, 10, 5581.                                                                    | 5.8 | 89        |
| 22 | Synthetic Polyester-Hydrolyzing Enzymes From Thermophilic Actinomycetes. Advances in Applied Microbiology, 2014, 89, 267-305.                                                                                       | 1.3 | 86        |
| 23 | Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor.<br>Journal of Membrane Science, 2015, 494, 182-187.                                                                | 4.1 | 71        |
| 24 | Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles.<br>Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 72-78.                                                   | 1.8 | 67        |
| 25 | High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase<br>from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). Journal of Biotechnology, 2010, 146,<br>100-104.     | 1.9 | 61        |
| 26 | Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of<br>Environmental Management, 2020, 263, 110402.                                                                         | 3.8 | 55        |
| 27 | The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future. Metabolic Engineering, 2022, 71, 77-98.                                                                 | 3.6 | 55        |
| 28 | Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio, 2016, 6, 919-927.                                                         | 1.0 | 52        |
| 29 | Engineering and evaluation of thermostable <i>Is</i> PETase variants for PET degradation. Engineering in Life Sciences, 2022, 22, 192-203.                                                                          | 2.0 | 51        |
| 30 | A highâ€throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.<br>Biotechnology Journal, 2012, 7, 1517-1521.                                                                       | 1.8 | 49        |
| 31 | UV Pretreatment Impairs the Enzymatic Degradation of Polyethylene Terephthalate. Frontiers in Microbiology, 2020, 11, 689.                                                                                          | 1.5 | 46        |
| 32 | Biocatalysis in the Recycling Landscape for Synthetic Polymers and Plastics towards Circular Textiles.<br>ChemSusChem, 2021, 14, 4028-4040.                                                                         | 3.6 | 46        |
| 33 | Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Science of the Total Environment, 2021, 773, 145111.                                    | 3.9 | 37        |
| 34 | Plastic Biodegradation: Challenges and Opportunities. , 2018, , 1-29.                                                                                                                                               |     | 33        |
| 35 | MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project<br>MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.                                       | 2.6 | 33        |
| 36 | Fusion of Chitin-Binding Domain From Chitinolyticbacter meiyuanensis SYBC-H1 to the Leaf-Branch<br>Compost Cutinase for Enhanced PET Hydrolysis. Frontiers in Bioengineering and Biotechnology, 2021,<br>9, 762854. | 2.0 | 28        |

Ren Wei

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects<br>on the gut microbiome. Chemosphere, 2022, 304, 135263.                                                                           | 4.2 | 25        |
| 38 | Process analysis of microplastic degradation using activated PMS and Fenton reagents. Chemosphere, 2022, 298, 134220.                                                                                                                | 4.2 | 22        |
| 39 | Fast Turbidimetric Assay for Analyzing the Enzymatic Hydrolysis of Polyethylene Terephthalate Model<br>Substrates. Biotechnology Journal, 2019, 14, e1800272.                                                                        | 1.8 | 19        |
| 40 | Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate nanoparticles. Methods in Enzymology, 2021, 648, 253-270.                                                            | 0.4 | 18        |
| 41 | Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Applied and<br>Environmental Microbiology, 2022, 88, .                                                                                           | 1.4 | 17        |
| 42 | Biosensor and chemo-enzymatic one-pot cascade applications to detect and transform PET-derived terephthalic acid in living cells. IScience, 2022, 25, 104326.                                                                        | 1.9 | 16        |
| 43 | Efficient extracellular recombinant production and purification of a Bacillus cyclodextrin glucanotransferase in Escherichia coli. Microbial Cell Factories, 2017, 16, 87.                                                           | 1.9 | 15        |
| 44 | Mechanistic investigation of enzymatic degradation of polyethylene terephthalate by nuclear magnetic resonance. Methods in Enzymology, 2021, 648, 231-252.                                                                           | 0.4 | 11        |
| 45 | Editorial: Microbial Degradation of Plastics. Frontiers in Microbiology, 2021, 12, 635621.                                                                                                                                           | 1.5 | 11        |
| 46 | Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli. Journal of Biological Engineering, 2019, 13, 30.                                                       | 2.0 | 9         |
| 47 | Yeast cell surface display of bacterial PET hydrolase as a sustainable biocatalyst for the degradation of polyethylene terephthalate. Methods in Enzymology, 2021, 648, 457-477.                                                     | 0.4 | 8         |
| 48 | Quantum Mechanical Investigation of the Oxidative Cleavage of the C–C Backbone Bonds in<br>Polyethylene Model Molecules. Polymers, 2021, 13, 2730.                                                                                   | 2.0 | 8         |
| 49 | Plastic Biodegradation: Challenges and Opportunities. , 2019, , 333-361.                                                                                                                                                             |     | 5         |
| 50 | Enzymatic surface treatment of poly (3â€hydroxybutyrate) ( <scp>PHB</scp> ), and poly<br>(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) ( <scp>PHBV</scp> ). Journal of Chemical Technology and<br>Biotechnology, 2015, 90, 2036-2039. | 1.6 | 3         |
| 51 | Diversity of polyester degrading bacteria in surface sediments from Yangtze River Estuary. AIP<br>Conference Proceedings, 2019, , .                                                                                                  | 0.3 | 2         |
| 52 | Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-î±-glucanotransferase. Carbohydrate Polymers, 2015, 122, 329-335.                                                   | 5.1 | 1         |
| 53 | Improved Stability of Baeyer–Villiger Mono-Oxygenase from Pseudomonas fluorescens by Substitution of Cysteine Residues. Journal of Biobased Materials and Bioenergy, 2019, 13, 490-497.                                              | 0.1 | 1         |
| 54 | Vergleich von Polyethylenterephthalat-hydrolysierenden Cutinase-Varianten aus Thermobifida fusca.<br>Chemie-Ingenieur-Technik, 2010, 82, 1487-1487.                                                                                  | 0.4 | 0         |