Nikola Stan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036753/publications.pdf

Version: 2024-02-01

		1684188	1588992	
15	63	5	8	
papers	citations	h-index	g-index	
15	15	15	77	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	High-Speed Interrogation of Multiplexed Fiber Bragg Gratings With Spectral Distortion. IEEE Sensors Journal, 2017, 17, 6941-6947.	4.7	4
2	Optical Sensing of Electric Fields in Harsh Environments. Journal of Lightwave Technology, 2017, 35, 669-676.	4.6	8
3	Optical electric field sensor sensitivity direction rerouting and enhancement using a passive integrated dipole antenna. Applied Optics, 2017, 56, 4911.	2.1	5
4	Non-perturbing voltage measurement in a coaxial cable with slab-coupled optical sensors. Applied Optics, 2017, 56, 6814.	1.8	7
5	Slab-coupled optical sensor fabrication using side-polished Panda fibers. Applied Optics, 2016, 55, 8848.	2.1	6
6	High electric field measurement using slab-coupled optical sensors. Applied Optics, 2016, 55, 603.	2.1	9
7	Optical Sensing of Electrical Fields in Harsh Environments. , 2016, , .		1
8	Optical Electric Field Sensor using Push-Pull for Vibration Noise Reduction. , 2015, , .		0
9	Push–pull slab coupled optical sensor for measuring electric fields in a vibrational environment. Applied Optics, 2015, 54, 5203.	2.1	9
10	High electric field measurement with slab coupled optical sensors using nonlinear calibration. , 2015, , .		0
11	High voltage measurements using slab coupled optical sensors (SCOS). , 2015, , .		1
12	Measuring arc dynamics using a slab coupled optical sensor (SCOS)., 2015,,.		O
13	High-speed interrogation of multiplexed Fiber Bragg gratings enabling real-time visualization of dynamic events such as impact loading. , 2014 , , .		3
14	Increasing dynamic range of a fibre Bragg grating edge-filtering interrogator with a proportional control loop. Measurement Science and Technology, 2014, 25, 065206.	2.6	10
15	Dynamic shape sensing using a fiber Bragg grating mesh. , 2013, , .		O