David G Madden

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9036702/david-g-madden-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,679 38 19 40 h-index g-index citations papers 2,280 42 9.2 4.79 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
38	Tuning the Selectivity between CH and CO in Molecular Porous Materials. <i>Langmuir</i> , 2021 , 37, 13838-13	8 4 5	2
37	Amino-Functionalised Hybrid Ultramicroporous Materials that Enable Single-Step Ethylene Purification from a Ternary Mixture. <i>Angewandte Chemie</i> , 2021 , 133, 10997-11004	3.6	2
36	Amino-Functionalised Hybrid Ultramicroporous Materials that Enable Single-Step Ethylene Purification from a Ternary Mixture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10902-10909	16.4	16
35	25 Jahre retikulīle Chemie. <i>Angewandte Chemie</i> , 2021 , 133, 24142	3.6	О
34	Monolithic metal-organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-	- 65 56	O
33	Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16006-16015	13	6
32	25 Years of Reticular Chemistry. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23946-23974	16.4	50
31	Metal-Organic Material Polymer Coatings for Enhanced Gas Sorption Performance and Hydrolytic Stability under Humid Conditions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 33759-33764	9.5	9
30	Shaping the Future of Fuel: Monolithic Metal-Organic Frameworks for High-Density Gas Storage. Journal of the American Chemical Society, 2020 , 142, 8541-8549	16.4	82
29	Highly selective trace ammonium removal from dairy wastewater streams by aluminosilicate materials. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 86, 39-46	6.3	4
28	Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring Drug Delivery from MOFs in Real Time. <i>Cell Reports Physical Science</i> , 2020 , 1, 100254	6.1	5
27	Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO Separation under Dry and Wet Environments through Direct CO-Sulfone Interactions. <i>ACS Applied Materials & Direct Section</i> , 12, 41177-41184	9.5	7
26	Pseudomorphic transformation and post synthetic modification of amorphous silica for CO2 sorption applications. <i>SN Applied Sciences</i> , 2019 , 1, 1	1.8	O
25	CO2 Capture: Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhanced CO2 Selective Sorption (Small 22/2019). <i>Small</i> , 2019 , 15, 1970118	11	2
24	Specific K Binding Sites as CO Traps in a Porous MOF for Enhanced CO Selective Sorption. <i>Small</i> , 2019 , 15, e1900426	11	45
23	A Microporous Co-MOF for Highly Selective CO Sorption in High Loadings Involving Aryl C-HIIIO?C?O Interactions: Combined Simulation and Breakthrough Studies. <i>Inorganic Chemistry</i> , 2019 , 58, 11553-11560	5.1	13
22	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. <i>Science</i> , 2019 , 366, 241-246	33.3	177

(2015-2019)

21	Highly selective CO removal for one-step liquefied natural gas processing by physisorbents. <i>Chemical Communications</i> , 2019 , 55, 3219-3222	5.8	23
20	Trace CO capture by an ultramicroporous physisorbent with low water affinity. <i>Science Advances</i> , 2019 , 5, eaax9171	14.3	62
19	Efficient CO Removal for Ultra-Pure CO Production by Two Hybrid Ultramicroporous Materials. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3332-3336	16.4	38
18	Efficient CO2 Removal for Ultra-Pure CO Production by Two Hybrid Ultramicroporous Materials. <i>Angewandte Chemie</i> , 2018 , 130, 3390-3394	3.6	8
17	Impact of partial interpenetration in a hybrid ultramicroporous material on CH/CH separation performance. <i>Chemical Communications</i> , 2018 , 54, 3488-3491	5.8	29
16	Finding the Optimal Balance between the Pore Size and Pore Chemistry in Hybrid Ultramicroporous Materials for Trace Acetylene Capture. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6000-6004	5.6	6
15	Highly Selective Separation of CH from CO by a New Dichromate-Based Hybrid Ultramicroporous Material. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	81
14	Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. <i>Chemical Communications</i> , 2017 , 53, 5946-5949	5.8	66
13	Flue-gas and direct-air capture of CO2 by porous metal-organic materials. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	48
12	Enhanced Stability toward Humidity in a Family of Hybrid Ultramicroporous Materials Incorporating Cr2O72IPillars. <i>Crystal Growth and Design</i> , 2017 , 17, 1933-1937	3.5	8
11	The effect of centred versus offset interpenetration on CH sorption in hybrid ultramicroporous materials. <i>Chemical Communications</i> , 2017 , 53, 11592-11595	5.8	32
10	Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2. <i>Angewandte Chemie</i> , 2016 , 128, 10424-10428	3.6	34
9	Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10268-72	16.4	185
8	CO2 sorption performance by aminosilane functionalized spheres prepared via co-condensation and post-synthesis methods. <i>AICHE Journal</i> , 2016 , 62, 2825-2832	3.6	6
7	Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. <i>CheM</i> , 2016 , 1, 753-765	16.2	232
6	Carbon dioxide capture with amino-functionalised zeolite-🛮 A temperature programmed desorption study under dry and humid conditions. <i>Microporous and Mesoporous Materials</i> , 2016 , 228, 310-317	5.3	37
5	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. <i>Chemical Science</i> , 2016 , 7, 5470-5476	9.4	56
4	Direct Air Capture of CO2 by Physisorbent Materials. <i>Angewandte Chemie</i> , 2015 , 127, 14580-14585	3.6	29

Direct Air Capture of CO2 by Physisorbent Materials. *Angewandte Chemie - International Edition*, **2015**, 54, 14372-7

16.4 260

How Reproducible Are Surface Areas Calculated from the BET Equation?

5

How Reproducible are Surface Areas Calculated from the BET Equation?. *Advanced Materials*,2201502 24 12