Lorenz T Biegler

List of Publications by Citations

Source: https://exaly.com/author-pdf/9036457/lorenz-t-biegler-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 362
 15,832
 60
 118

 papers
 citations
 h-index
 g-index

 376
 18,397
 3.2
 7.29

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
362	On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. <i>Mathematical Programming</i> , 2006 , 106, 25-57	2.1	4467
361	Retrospective on optimization. Computers and Chemical Engineering, 2004, 28, 1169-1192	4	413
3 60	Nonlinear Programming 2010 ,		375
359	An overview of simultaneous strategies for dynamic optimization. <i>Chemical Engineering and Processing: Process Intensification</i> , 2007 , 46, 1043-1053	3.7	352
358	Advances in simultaneous strategies for dynamic process optimization. <i>Chemical Engineering Science</i> , 2002 , 57, 575-593	4.4	302
357	Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. <i>Computers and Chemical Engineering</i> , 1984 , 8, 243-247	4	277
356	Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. <i>Computers and Chemical Engineering</i> , 2009 , 33, 575-582	4	266
355	The advanced-step NMPC controller: Optimality, stability and robustness. <i>Automatica</i> , 2009 , 45, 86-93	5.7	265
354	Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence. <i>SIAM Journal on Optimization</i> , 2005 , 16, 1-31	2	226
353	Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration. Industrial & Engineering Chemistry Research, 2003, 42, 339-348	3.9	214
352	Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. <i>Industrial & Engineering Chemistry Research</i> , 1991 , 30, 376-	388	161
351	Simultaneous dynamic optimization strategies: Recent advances and challenges. <i>Computers and Chemical Engineering</i> , 2006 , 30, 1560-1575	4	156
350	Lyapunov stability of economically oriented NMPC for cyclic processes. <i>Journal of Process Control</i> , 2011 , 21, 501-509	3.9	142
349	Line Search Filter Methods for Nonlinear Programming: Local Convergence. <i>SIAM Journal on Optimization</i> , 2005 , 16, 32-48	2	140
348	Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2Capture. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 8084-8094	3.9	140
347	Optimization strategies for simulated moving bed and PowerFeed processes. <i>AICHE Journal</i> , 2006 , 52, 1343-1350	3.6	136
346	Data reconciliation and gross-error detection for dynamic systems. <i>AICHE Journal</i> , 1996 , 42, 2841-2856	3.6	134

(2009-2009)

345	A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. <i>AICHE Journal</i> , 2009 , 56, 1813-1828	3.6	129
344	Convergence rates for direct transcription of optimal control problems using collocation at Radau points. <i>Computational Optimization and Applications</i> , 2008 , 41, 81-126	1.4	129
343	A framework for efficient large scale equation-oriented flowsheet optimization. <i>Computers and Chemical Engineering</i> , 2015 , 72, 3-20	4	118
342	Contamination Source Determination for Water Networks. <i>Journal of Water Resources Planning and Management - ASCE</i> , 2005 , 131, 125-134	2.8	117
341	A Reduced Hessian Method for Large-Scale Constrained Optimization. <i>SIAM Journal on Optimization</i> , 1995 , 5, 314-347	2	112
340	Constraint handing and stability properties of model-predictive control. AICHE Journal, 1994, 40, 1138-	13,565	108
339	Simulation and optimization of pressure-swing adsorption systems for air separation. <i>AICHE Journal</i> , 2003 , 49, 1140-1157	3.6	107
338	Optimizing process economics online using model predictive control. <i>Computers and Chemical Engineering</i> , 2013 , 58, 334-343	4	104
337	Targeting strategies for the synthesis and energy integration of nonisothermal reactor networks. <i>Industrial & Engineering Chemistry Research</i> , 1992 , 31, 2152-2164	3.9	96
336	Advanced step nonlinear model predictive control for air separation units. <i>Journal of Process Control</i> , 2009 , 19, 678-685	3.9	95
335	Dynamic Optimization in the Design and Scheduling of Multiproduct Batch Plants. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 2234-2246	3.9	94
334	A fast moving horizon estimation algorithm based on nonlinear programming sensitivity. <i>Journal of Process Control</i> , 2008 , 18, 876-884	3.9	93
333	MPEC problem formulations and solution strategies with chemical engineering applications. <i>Computers and Chemical Engineering</i> , 2008 , 32, 2903-2913	4	89
332	Redescending estimators for data reconciliation and parameter estimation. <i>Computers and Chemical Engineering</i> , 2001 , 25, 1585-1599	4	87
331	Dynamic Optimization Strategies for Three-Dimensional Conflict Resolution of Multiple Aircraft. Journal of Guidance, Control, and Dynamics, 2004 , 27, 586-594	2.1	86
330	Synthesis of Optimal Chemical Reactor Networks. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 1344-1353	3.9	84
329	Multi-scale optimization for process systems engineering. <i>Computers and Chemical Engineering</i> , 2014 , 60, 17-30	4	82
328	Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling. <i>Industrial & Description Systems Using Reduced-Order Modeling</i> . <i>Industrial & Description Systems</i> .	3.9	79

327	Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems. <i>Chemical Engineering Science</i> , 2008 , 63, 4834-4845	4.4	79
326	Optimal sensitivity based on IPOPT. <i>Mathematical Programming Computation</i> , 2012 , 4, 307-331	7.8	78
325	On-line implementation of nonlinear MPC: an experimental case study. <i>Control Engineering Practice</i> , 2001 , 9, 847-857	3.9	78
324	An extension of Newton-type algorithms for nonlinear process control. <i>Automatica</i> , 1995 , 31, 281-286	5.7	78
323	Mathematical programs with equilibrium constraints (MPECs) in process engineering. <i>Computers and Chemical Engineering</i> , 2003 , 27, 1381-1392	4	75
322	Robust stability of economically oriented infinite horizon NMPC that include cyclic processes. Journal of Process Control, 2012 , 22, 51-59	3.9	74
321	A reduced space interior point strategy for optimization of differential algebraic systems. <i>Computers and Chemical Engineering</i> , 2000 , 24, 39-51	4	73
320	New strategies for flexibility analysis and design under uncertainty. <i>Computers and Chemical Engineering</i> , 2000 , 24, 2193-2209	4	73
319	An MPEC formulation for dynamic optimization of distillation operations. <i>Computers and Chemical Engineering</i> , 2004 , 28, 2037-2052	4	70
318	Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration. <i>AICHE Journal</i> , 2012 , 58, 190-204	3.6	69
317	Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization. <i>Energy & Energy & En</i>	4.1	68
316	An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. <i>Computers and Chemical Engineering</i> , 2010 , 34, 2085-2096	4	68
315	Mixed-Integer Approach for Obtaining Unique Solutions in Source Inversion of Water Networks. Journal of Water Resources Planning and Management - ASCE, 2006 , 132, 242-251	2.8	68
314	An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs). <i>SIAM Journal on Optimization</i> , 2005 , 15, 720-750	2	68
313	Optimal process design with model parameter uncertainty and process variability. <i>AICHE Journal</i> , 2003 , 49, 438-449	3.6	68
312	Integrated scheduling and dynamic optimization of batch processes using state equipment networks. <i>AICHE Journal</i> , 2012 , 58, 3416-3432	3.6	66
311	Nonlinear Programming Superstructure for Optimal Dynamic Operations of Simulated Moving Bed Processes. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8503-8513	3.9	66
310	Convergence depth control for interior point methods. <i>AICHE Journal</i> , 2010 , 56, 3146-3161	3.6	65

(2000-2005)

309	Dynamic Optimization of HIPS Open-Loop Unstable Polymerization Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 2659-2674	3.9	65	
308	Economic Nonlinear Model Predictive Control for periodic optimal operation of gas pipeline networks. <i>Computers and Chemical Engineering</i> , 2013 , 52, 90-99	4	64	
307	Process control strategies for constrained nonlinear systems. <i>Industrial & amp; Engineering Chemistry Research</i> , 1988 , 27, 1421-1433	3.9	64	
306	Design for model parameter uncertainty using nonlinear confidence regions. <i>AICHE Journal</i> , 2001 , 47, 1794-1804	3.6	63	
305	Constructive targeting approaches for the synthesis of chemical reactor networks. <i>Industrial & Engineering Chemistry Research</i> , 1992 , 31, 300-312	3.9	63	
304	Simulation and optimal design of multiple-bed pressure swing adsorption systems. <i>AICHE Journal</i> , 2004 , 50, 2904-2917	3.6	62	
303	Dynamic optimization of the Tennessee Eastman process using the OptControlCentre. <i>Computers and Chemical Engineering</i> , 2003 , 27, 1513-1531	4	62	
302	Fast economic model predictive control based on NLP-sensitivities. <i>Journal of Process Control</i> , 2014 , 24, 1260-1272	3.9	60	
301	Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control. <i>Computers and Chemical Engineering</i> , 2009 , 33, 1735-1746	4	59	
300	Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery. <i>Energy</i> , 2017 , 119, 322-333	7.9	57	
299	Superstructure-Based Optimal Synthesis of Pressure Swing Adsorption Cycles for Precombustion CO2 Capture. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 5066-5079	3.9	57	
298	Recent Advances in Simulation and Optimal Design of Pressure Swing Adsorption Systems. <i>Separation and Purification Reviews</i> , 2005 , 33, 1-39	7.3	57	
297	A quasi-sequential approach to large-scale dynamic optimization problems. <i>AICHE Journal</i> , 2006 , 52, 255-268	3.6	56	
296	Quadratic programming algorithms for large-scale model predictive control. <i>Journal of Process Control</i> , 2002 , 12, 775-795	3.9	56	
295	Algorithmic synthesis of chemical reactor networks using mathematical programming. <i>Industrial & Engineering Chemistry Fundamentals</i> , 1986 , 25, 621-627		55	
294	Discrete Time Formulation for the Integration of Scheduling and Dynamic Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4303-4315	3.9	53	
293	Constrained particle filter approach to approximate the arrival cost in Moving Horizon Estimation. Journal of Process Control, 2011 , 21, 909-919	3.9	53	
292	Failure of global convergence for a class of interior point methods for nonlinear programming. <i>Mathematical Programming</i> , 2000 , 88, 565-574	2.1	52	

291	Dynamic Optimization of a Batch Cooling Crystallization Process. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 1469-1477	3.9	52
290	A Moving Horizon Estimator for processes with multi-rate measurements: A Nonlinear Programming sensitivity approach. <i>Journal of Process Control</i> , 2012 , 22, 677-688	3.9	51
289	Fast Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7882-7890	3.9	51
288	Fast implementations and rigorous models: Can both be accommodated in NMPC?. <i>International Journal of Robust and Nonlinear Control</i> , 2008 , 18, 800-815	3.6	49
287	A new optimization algorithm with application to nonlinear MPC. <i>Journal of Process Control</i> , 2004 , 14, 853-865	3.9	49
286	Stochastic back-off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty. <i>AICHE Journal</i> , 2018 , 64, 2379-2389	3.6	48
285	Stable Decomposition for Dynamic Optimization. <i>Industrial & amp; Engineering Chemistry Research</i> , 1995 , 34, 1253-1266	3.9	48
284	Fast nonlinear model predictive control: Formulation and industrial process applications. <i>Computers and Chemical Engineering</i> , 2013 , 51, 55-64	4	47
283	Incorporating joint confidence regions into design under uncertainty. <i>Computers and Chemical Engineering</i> , 1999 , 23, 1563-1575	4	47
282	Smoothing methods for complementarity problems in process engineering. <i>AICHE Journal</i> , 1999 , 45, 1535-1547	3.6	46
281	QPSchur: A dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming. <i>Optimization and Engineering</i> , 2006 , 7, 5-32	2.1	45
280	pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations. <i>Mathematical Programming Computation</i> , 2018 , 10, 187-223	7.8	44
279	A trust-region framework for constrained optimization using reduced order modeling. <i>Optimization and Engineering</i> , 2013 , 14, 3-35	2.1	44
278	Advanced-multi-step nonlinear model predictive control. <i>Journal of Process Control</i> , 2013 , 23, 1116-112	83.9	44
277	Extended Discrete-Time Resource Task Network Formulation for the Reactive Scheduling of a Mixed Batch/Continuous Process. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 17112-171	23 9	43
276	Process integration and superstructure optimization of Organic Rankine Cycles (ORCs) with heat exchanger network synthesis. <i>Computers and Chemical Engineering</i> , 2017 , 107, 257-270	4	39
275	Optimization of Fractional Order Dynamic Chemical Processing Systems. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 5110-5127	3.9	39
274	Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation. <i>Computers and Chemical Engineering</i> , 2009 , 33, 379-390	4	39

(2005-2006)

273	Large-Scale Parameter Estimation in Low-Density Polyethylene Tubular Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7867-7881	3.9	39	
272	Parameter estimation in metabolic flux balance models for batch fermentation Bormulation & Solution using Differential Variational Inequalities (DVIs). <i>Annals of Operations Research</i> , 2006 , 148, 251	- 27 0	39	
271	A trust region filter method for glass box/black box optimization. AICHE Journal, 2016, 62, 3124-3136	3.6	38	
270	Improvement of state profile accuracy in nonlinear dynamic optimization with the quasi-sequential approach. <i>AICHE Journal</i> , 2011 , 57, 2185-2197	3.6	38	
269	Large scale nonlinear optimization for asymmetric operation and design of Simulated Moving Beds. Journal of Chromatography A, 2006, 1133, 226-40	4.5	38	
268	Linear programming formulations for attainable region analysis. <i>Chemical Engineering Science</i> , 2002 , 57, 2015-2028	4.4	38	
267	Large-scale optimization strategies for pressure swing adsorption cycle synthesis. <i>AICHE Journal</i> , 2012 , 58, 3777-3791	3.6	36	
266	Reactor modeling and recipe optimization of polyether polyol processes: Polypropylene glycol. <i>AICHE Journal</i> , 2013 , 59, 2515-2529	3.6	36	
265	On-line state estimation of nonlinear dynamic systems with gross errors. <i>Computers and Chemical Engineering</i> , 2014 , 70, 149-159	4	35	
264	Optimization of IGCC processes with reduced order CFD models. <i>Computers and Chemical Engineering</i> , 2011 , 35, 1705-1717	4	35	
263	Optimization of grade transitions in polyethylene solution polymerization process under uncertainty. <i>Computers and Chemical Engineering</i> , 2016 , 95, 260-279	4	34	
262	Robust stability of nonlinear model predictive control based on extended Kalman filter. <i>Journal of Process Control</i> , 2012 , 22, 82-89	3.9	33	
261	Nonlinear Programming Strategies for State Estimation and Model Predictive Control. <i>Lecture Notes in Control and Information Sciences</i> , 2009 , 419-432	0.5	33	
260	Global Optimization of Highly Nonlinear Dynamic Systems. <i>Industrial & Dynamic Systems</i> . <i>Indu</i>	3.9	33	
259	Modeling and optimization of a seeded suspension polymerization process. <i>Chemical Engineering Science</i> , 2010 , 65, 4350-4362	4.4	32	
258	State-space nonlinear process modeling: Identification and universality. AICHE Journal, 1998, 44, 2229-2	2339	32	
257	Global optimization of Optimal Power Flow using a branch & bound algorithm 2012,		31	
256	Simulation and Optimization of a Pressure Swing Adsorption System: Recovering Hydrogen from Methane. <i>Adsorption</i> , 2005 , 11, 615-620	2.6	31	

255	Convex attainable region projections for reactor network synthesis. <i>Computers and Chemical Engineering</i> , 2000 , 24, 225-229	4	31
254	Numerical Experience with a Reduced Hessian Method for Large Scale Constrained Optimization. <i>Computational Optimization and Applications</i> , 2000 , 15, 45-67	1.4	31
253	Optimal Grade Transitions in the High-Impact Polystyrene Polymerization Process. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6175-6189	3.9	30
252	A stable elemental decomposition for dynamic process optimization. <i>Journal of Computational and Applied Mathematics</i> , 2000 , 120, 41-57	2.4	30
251	A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries. <i>Applied Energy</i> , 2016 , 179, 302-315	10.7	29
250	Recent improvements to a multiplier-free reduced Hessian successive quadratic programming algorithm. <i>Computers and Chemical Engineering</i> , 1998 , 22, 963-978	4	27
249	Dynamic Reduced Order Models for Simulating Bubbling Fluidized Bed Adsorbers. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 6959-6974	3.9	26
248	Optimized distillation coupled with state-of-the-art membranes for propylene purification. <i>Journal of Membrane Science</i> , 2018 , 556, 321-328	9.6	26
247	Dynamic Optimization for Batch Design and Scheduling with Process Model Uncertainty. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 3708-3717	3.9	26
246	Optimal Active Catalyst and Inert Distribution in Catalytic Packed Bed Reactors: ortho-Xylene Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 15311-15320	3.9	25
245	Aggregate models based on improved group methods for simulation and optimization of distillation systems. <i>Computers and Chemical Engineering</i> , 2010 , 34, 1312-1319	4	25
244	Integrated control and process design during optimal polymer grade transition operations. <i>Computers and Chemical Engineering</i> , 2008 , 32, 2823-2837	4	25
243	Dynamic optimization for the core-flooding problem in reservoir engineering. <i>Computers and Chemical Engineering</i> , 2005 , 29, 1787-1800	4	24
242	Interior point SQP strategies for large-scale, structured process optimization problems. <i>Computers and Chemical Engineering</i> , 1999 , 23, 543-554	4	24
241	A robust NMPC scheme for semi-batch polymerization reactors. <i>IFAC-PapersOnLine</i> , 2016 , 49, 37-42	0.7	24
240	Advanced optimization strategies for integrated dynamic process operations. <i>Computers and Chemical Engineering</i> , 2018 , 114, 3-13	4	23
239	Numerical simulation and optimization of a direct methanol fuel cell. <i>Computers and Chemical Engineering</i> , 2005 , 29, 1849-1860	4	23
238	Accurate determination of optimal reflux policies for the maximum distillate problem in batch distillation. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 692-700	3.9	23

237	A Trust Region SQP Algorithm for Equality Constrained Parameter Estimation with Simple Parameter Bounds. <i>Computational Optimization and Applications</i> , 2004 , 28, 51-86	1.4	21
236	Robustly stable economic NMPC for non-dissipative stage costs. <i>Journal of Process Control</i> , 2017 , 57, 116-126	3.9	20
235	Multiperiod design and planning with interior point methods. <i>Computers and Chemical Engineering</i> , 1999 , 23, 919-932	4	20
234	Nested direct transcription optimization for singular optimal control problems. <i>AICHE Journal</i> , 2016 , 62, 3611-3627	3.6	20
233	Contact-Implicit Trajectory Optimization Using Orthogonal Collocation. <i>IEEE Robotics and Automation Letters</i> , 2019 , 4, 2242-2249	4.2	19
232	An optimization model for the treatment of perfluorocarboxylic acids considering membrane preconcentration and BDD electrooxidation. <i>Water Research</i> , 2019 , 164, 114954	12.5	19
231	Rigorous Optimization-based Synthesis of Distillation Cascades without Integer Variables. <i>Computer Aided Chemical Engineering</i> , 2014 , 55-60	0.6	19
230	Sensitivity of PEFC Models to Cathode Layer Microstructure. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B1222	3.9	19
229	Advantages of Nonlinear-Programming-Based Methodologies for Inequality Path-Constrained Optimal Control Problems Numerical Study. <i>SIAM Journal of Scientific Computing</i> , 2008 , 30, 957-981	2.6	19
228	Large scale optimization strategies for zone configuration of simulated moving beds. <i>Computers and Chemical Engineering</i> , 2008 , 32, 135-144	4	19
227	Parameter Estimation for a Polymerization Reactor Model with a Composite-Step Trust-Region NLP Algorithm. <i>Industrial & Description of the Composite Step Trust-Region NLP Algorithm</i> . <i>Industrial & Description of the Composite Step Trust-Region NLP Algorithm</i> . <i>Industrial & Description of the Composite Step Trust-Region NLP Algorithm</i> .	3.9	19
226	Design and optimization of pressure swing adsorption systems with parallel implementation. <i>Computers and Chemical Engineering</i> , 2005 , 29, 393-399	4	19
225	Optimization of grade transitions in polyethylene solution polymerization processes. <i>AICHE Journal</i> , 2016 , 62, 1126-1142	3.6	19
224	Optimization of sub-ambient separation systems with embedded cubic equation of state thermodynamic models and complementarity constraints. <i>Computers and Chemical Engineering</i> , 2015 , 81, 323-343	4	18
223	Synthesis of mass exchanger networks in a two-step hybrid optimization strategy. <i>Chemical Engineering Science</i> , 2018 , 178, 118-135	4.4	18
222	Dynamic optimization based integrated operation strategy design for passive cooling ventilation and active building air conditioning. <i>Energy and Buildings</i> , 2014 , 85, 126-135	7	18
221	Robustly stable adaptive horizon nonlinear model predictive control. <i>Journal of Process Control</i> , 2018 , 70, 109-122	3.9	18
220	New nonlinear programming paradigms for the future of process optimization. <i>AICHE Journal</i> , 2017 , 63, 1178-1193	3.6	17

219	Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process. <i>Journal of Process Control</i> , 2019 , 80, 167-179	3.9	17
218	Optimal operations for large-scale seawater reverse osmosis networks. <i>Journal of Membrane Science</i> , 2015 , 476, 508-524	9.6	17
217	Global optimization of multi-period optimal power flow 2013,		17
216	Comparison of configurations of a four-column simulated moving bed process by multi-objective optimization. <i>Adsorption</i> , 2008 , 14, 433-442	2.6	17
215	A tool to analyze robust stability for model predictive controllers. <i>Journal of Process Control</i> , 1999 , 9, 233-246	3.9	17
214	Advanced solution methods for microkinetic models of catalytic reactions: A methanol synthesis case study. <i>AICHE Journal</i> , 2014 , 60, 1336-1346	3.6	16
213	A bilevel NLP sensitivity-based decomposition for dynamic optimization with moving finite elements. <i>AICHE Journal</i> , 2014 , 60, 966-979	3.6	16
212	Equation-Oriented Optimization on an Industrial High-Density Polyethylene Slurry Process with Target Molecular Weight Distribution. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7240-	7251	16
211	Parallel calculation methods for molecular weight distribution of batch free radical polymerization. <i>Computers and Chemical Engineering</i> , 2013 , 48, 175-186	4	16
210	A Survey on Sensitivity-based Nonlinear Model Predictive Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 499-510		16
209	Dynamic real-time optimization under uncertainty of a hydroformylation mini-plant. <i>Computers and Chemical Engineering</i> , 2017 , 106, 836-848	4	15
208	Development of robust extended Kalman filter and moving window estimator for simultaneous state and parameter/disturbance estimation. <i>Journal of Process Control</i> , 2018 , 69, 158-178	3.9	15
207	Nonlinear programming strategies for dynamic chemical process optimization. <i>Theoretical Foundations of Chemical Engineering</i> , 2014 , 48, 541-554	0.9	15
206	Robust stability of nonlinear model predictive control with extended Kalman filter and target setting. <i>International Journal of Robust and Nonlinear Control</i> , 2013 , 23, 1240-1264	3.6	15
205	Nonlinear Programming Properties for Stable and Robust NMPC. IFAC-PapersOnLine, 2015, 48, 388-397	0.7	15
204	Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 12080-12091	3.9	15
203	An Inexact Trust-Region Algorithm for the Optimization of Periodic Adsorption Processes. <i>Industrial & Description Chemistry Research</i> , 2010 , 49, 12004-12013	3.9	15
202	Multi-Scenario-Based Robust Nonlinear Model Predictive Control with First Principle Models. Computer Aided Chemical Engineering, 2009, 27, 1293-1298	0.6	15

(2018-2010)

201	Stability of a class of discrete-time nonlinear recursive observers. <i>Journal of Process Control</i> , 2010 , 20, 1150-1160	3.9	15
200	Large-Scale PDE-Constrained Optimization: An Introduction. <i>Lecture Notes in Computational Science and Engineering</i> , 2003 , 3-13	0.3	15
199	Multiperiod reactor network synthesis. Computers and Chemical Engineering, 2000, 24, 2055-2068	4	15
198	Advanced trust region optimization strategies for glass box/black box models. <i>AICHE Journal</i> , 2018 , 64, 3934-3943	3.6	15
197	Equation-Oriented Framework for Optimal Synthesis of Integrated Reactive Distillation Systems for Fischer Processes. <i>Energy & Energy & 2018</i> , 32, 7199-7209	4.1	15
196	A novel strategy for dynamic optimization of grade transition processes based on molecular weight distribution. <i>AICHE Journal</i> , 2014 , 60, 2498-2512	3.6	14
195	Next Generation Multi-Scale Process Systems Engineering Framework. <i>Computer Aided Chemical Engineering</i> , 2018 , 2209-2214	0.6	13
194	Kinetic parameter estimation of HDPE slurry process from molecular weight distribution: Estimability analysis and multistep methodology. <i>AICHE Journal</i> , 2014 , 60, 3442-3459	3.6	13
193	The Holistic Strategy in Multi-Scale Modeling. Advances in Chemical Engineering, 2011, 40, 59-118	0.6	13
192	Large-Scale Nonlinear Programming for Multi-scenario Optimization 2008, 323-336		13
191	An approach for simultaneous estimation of reaction kinetics and curve resolution from process and spectral data. <i>Journal of Chemometrics</i> , 2016 , 30, 506-522	1.6	13
190	An optimization model for assessment of membrane-based post-combustion gas upcycling into hydrogen or syngas. <i>Journal of Membrane Science</i> , 2018 , 563, 83-92	9.6	13
189	New directions for nonlinear process optimization. <i>Current Opinion in Chemical Engineering</i> , 2018 , 21, 32-40	5.4	12
188	Interior-point methods for reduced Hessian successive quadratic programming. <i>Computers and Chemical Engineering</i> , 1999 , 23, 859-873	4	12
187	Dynamic optimization with complementarity constraints: Smoothing for direct shooting. <i>Computers and Chemical Engineering</i> , 2020 , 139, 106891	4	12
186	Monte-Carlo-simulation-based optimization for copolymerization processes with embedded chemical composition distribution. <i>Computers and Chemical Engineering</i> , 2018 , 109, 261-275	4	12
185	Process optimization and working fluid mixture design for organic Rankine cycles (ORCs) recovering compression heat in oxy-combustion power plants. <i>Energy Conversion and Management</i> , 2018 , 175, 132-141	10.6	12
184	Parameters estimation and model discrimination for solid-liquid reactions in batch processes. <i>Chemical Engineering Science</i> , 2018 , 187, 455-469	4.4	12

183	Development of moving window state and parameter estimators under maximum likelihood and Bayesian frameworks. <i>Journal of Process Control</i> , 2017 , 60, 48-67	3.9	11
182	Optimization of multistage olefin/paraffin membrane separation processes through rigorous modeling. <i>AICHE Journal</i> , 2019 , 65, e16588	3.6	11
181	Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain. <i>Acta Astronautica</i> , 2018 , 146, 289-299	2.9	11
180	Economic NMPC for energy intensive applications with electricity price prediction. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1612-1616	0.6	11
179	Head-disk interface design in magnetic data storage. <i>Journal of Applied Physics</i> , 2012 , 111, 07B721	2.5	11
178	Nonlinear Optimization with Many Degrees of Freedom in Process Engineering. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6803-6812	3.9	11
177	Advanced-step multistage nonlinear model predictive control: Robustness and stability. <i>Journal of Process Control</i> , 2019 , 84, 192-206	3.9	11
176	Dynamic real-time optimization for a CO2 capture process. AICHE Journal, 2019, 65, e16511	3.6	11
175	Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation. <i>Current Opinion in Chemical Engineering</i> , 2019 , 25, 95-100	5.4	10
174	Integrating self-optimizing control and real-time optimization using zone control MPC. <i>Journal of Process Control</i> , 2015 , 34, 35-48	3.9	10
173	Development of a first-principles hybrid boiler model for oxy-combustion power generation system. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 46, 136-157	4.2	10
172	Parallel Monte Carlo Simulation of Molecular Weight Distribution and Chemical Composition Distribution for Copolymerization on a Graphics Processing Unit Platform. <i>Macromolecular Theory and Simulations</i> , 2015 , 24, 521-536	1.5	10
171	Random Sampling-Based Automatic Parameter Tuning for Nonlinear Programming Solvers. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 3907-3918	3.9	10
170	Dynamic optimization of natural gas pipeline networks with demand and composition uncertainty. <i>Chemical Engineering Science</i> , 2020 , 215, 115449	4.4	10
169	The IDAES process modeling framework and model library Elexibility for process simulation and optimization. <i>Journal of Advanced Manufacturing and Processing</i> , 2021 , 3, e10095	2.7	10
168	Process Intensification of Polymerization Processes with Embedded Molecular Weight Distributions Models: An Advanced Optimization Approach. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6133-6145	3.9	10
167	A simultaneous approach for singular optimal control based on partial moving grid. <i>AICHE Journal</i> , 2019 , 65, e16584	3.6	9
166	A multi-thread parallel computation method for dynamic simulation of molecular weight distribution of multisite polymerization. <i>Computers and Chemical Engineering</i> , 2015 , 82, 55-67	4	9

165	Reactor Modeling and Recipe Optimization of Ring-Opening Polymerization: Block Copolymers. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 7434-7446	3.9	9
164	Integrated Optimization Strategies for Dynamic Process Operations. <i>Theoretical Foundations of Chemical Engineering</i> , 2017 , 51, 910-927	0.9	9
163	Equation-oriented Optimization of Cryogenic Systems for Coal Oxycombustion Power Generation. <i>Energy Procedia</i> , 2014 , 63, 421-430	2.3	9
162	Force field parameter estimation of functional perfluoropolyether lubricants. <i>Journal of Applied Physics</i> , 2011 , 109, 07B728	2.5	9
161	A tool to analyze robust stability for constrained nonlinear MPC. <i>Journal of Process Control</i> , 2008 , 18, 383-390	3.9	9
160	Systematic optimization of an H2 PEM fuel cell power generation system with heat integration. <i>AICHE Journal</i> , 2006 , 52, 2496-2506	3.6	9
159	Real time optimal guidance of low-thrust spacecraft: an application of nonlinear model predictive control. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1065, 174-88	6.5	9
158	Optimal flowsheet configuration of a polymerization process with embedded molecular weight distributions. <i>AICHE Journal</i> , 2016 , 62, 131-145	3.6	9
157	A multi-objective reactive distillation optimization model for Fischer Tropsch synthesis. <i>Computers and Chemical Engineering</i> , 2020 , 135, 106754	4	8
156	Coal Oxycombustion Power Plant Optimization Using First Principles and Surrogate Boiler Models. <i>Energy Procedia</i> , 2014 , 63, 352-361	2.3	8
155	Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	8
154	A parallel implementation for parameter estimation with implicit models. <i>Annals of Operations Research</i> , 1993 , 42, 1-23	3.2	8
153	A Stable and Robust NMPC Strategy with Reduced Models and Nonuniform Grids. <i>IFAC-PapersOnLine</i> , 2016 , 49, 31-36	0.7	8
152	An efficient direct/indirect transcription approach for singular optimal control. <i>AICHE Journal</i> , 2019 , 65, 937-946	3.6	8
151	Multi-point powered descent guidance based on optimal sensitivity. <i>Aerospace Science and Technology</i> , 2019 , 86, 465-477	4.9	7
150	Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets: case study of two-stage rockets. <i>Engineering Optimization</i> , 2019 , 51, 627-645	2	7
149	Sensitivity-based hierarchical distributed model predictive control of nonlinear processes. <i>Journal of Process Control</i> , 2019 , 84, 146-167	3.9	7
148	Optimal operation of a membrane reactor network. <i>AICHE Journal</i> , 2014 , 60, 170-180	3.6	7

147	Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage. <i>Journal of Applied Physics</i> , 2012 , 111, 07B712	2.5	7
146	Robust nonlinear model predictive controller design based on multi-scenario formulation 2009,		7
145	Parametric study and estimation in CFD-based PEM fuel cell models. <i>AICHE Journal</i> , 2008 , 54, 2089-210	003.6	7
144	Chapter 1 Large-scale optimization strategies for zone configuration of simulated moving beds. <i>Computer Aided Chemical Engineering</i> , 2006 , 21, 131-136	0.6	7
143	Generalization of a Tailored Approach for Process Optimization. <i>Industrial & Description of Section 2000</i> , 39, 1731-1742	3.9	7
142	RELIABLE AND EFFICIENT OPTIMIZATION STRATEGIES FOR NONLINEAR MODEL PREDICTIVE CONTROL 1995 , 33-38		7
141	An indirect approach for singular optimal control problems. <i>Computers and Chemical Engineering</i> , 2020 , 139, 106923	4	7
140	D-RM Builder: A software tool for generating fast and accurate nonlinear dynamic reduced models from high-fidelity models. <i>Computers and Chemical Engineering</i> , 2016 , 94, 60-74	4	7
139	Dynamic optimization for grade transition processes using orthogonal collocation on molecular weight distribution. <i>AICHE Journal</i> , 2019 , 65, 1198-1210	3.6	7
138	Parallel cyclic reduction decomposition for dynamic optimization problems. <i>Computers and Chemical Engineering</i> , 2019 , 120, 54-69	4	7
137	Large-scale Optimization Formulations and Strategies for Nonlinear Model Predictive Control. <i>IFAC-PapersOnLine</i> , 2018 , 51, 1-15	0.7	7
136	Advanced-step Multistage Nonlinear Model Predictive Control. IFAC-PapersOnLine, 2018, 51, 122-127	0.7	7
135	A Multiplier-Free, Reduced Hessian Method for Process Optimization. <i>The IMA Volumes in Mathematics and Its Applications</i> , 1997 , 101-127	0.5	7
134	Kinetic parameter estimation based on spectroscopic data with unknown absorbing species. <i>AICHE Journal</i> , 2018 , 64, 3595-3613	3.6	6
133	Heterogeneous parallel method for mixed integer nonlinear programming. <i>Computers and Chemical Engineering</i> , 2014 , 66, 290-300	4	6
132	A Description of Multiscale Modeling for the Head-Disk Interface Focusing on Bottom-Level Lubricant and Carbon Overcoat Models. <i>Advances in Tribology</i> , 2013 , 2013, 1-27	1.6	6
131	Robust extended Kalman filter based nonlinear model predictive control formulation 2009,		6
130	Robust extensions for reduced-space barrier NLP algorithms. <i>Computers and Chemical Engineering</i> , 2011 , 35, 1994-2004	4	6

129	Multi-scale Optimization for Advanced Energy Processes. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 51-60	0.6	6
128	Atomistic simulation method in head-disk interface of magnetic data storage systems. <i>Journal of Applied Physics</i> , 2012 , 111, 07B717	2.5	6
127	Trajectory Control of Multiple Aircraft: An NMPC Approach 2007 , 629-639		6
126	Efficient Nonlinear Programming Algorithms for Chemical Process Control and Operations. <i>IFIP Advances in Information and Communication Technology</i> , 2009 , 21-35	0.5	6
125	Hierarchical decompositions for MPC of resource constrained control systems: applications to building energy management. <i>Optimization and Engineering</i> , 2021 , 22, 187-215	2.1	6
124	An MPCC Reactive Distillation Optimization Model for Multi-Objective Fischer Tropsch Synthesis. <i>Computer Aided Chemical Engineering</i> , 2019 , 451-456	0.6	5
123	110th Anniversary: Fischer Tropsch Synthesis for Multiphase Product Recovery through Reactive Distillation. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 13249-13259	3.9	5
122	Terminal region characterization and stability analysis of discrete time quasi-infinite horizon nonlinear model predictive control. <i>Journal of Process Control</i> , 2019 , 83, 30-52	3.9	5
121	Pressure Swing Adsorption Optimization Strategies for CO2 Capture. <i>Computer Aided Chemical Engineering</i> , 2015 , 36, 197-223	0.6	5
120	Optimal design of nonlinear temperature programmed reduction experiments. <i>AICHE Journal</i> , 2011 , 57, 2888-2901	3.6	5
119	A Multistep, Newton-Type Control Strategy for Constrained, Nonlinear Processes 1989,		5
118	Serial advanced-multi-step nonlinear model predictive control using an extended sensitivity method. <i>Journal of Process Control</i> , 2020 , 96, 82-93	3.9	5
117	Operational Optimization of Polymerization Reactors with Computational Fluid Dynamics and Embedded Molecular Weight Distribution Using the Iterative Surrogate Model Method. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9165-9179	3.9	5
116	Demand-based optimization of a chlorobenzene process with high-fidelity and surrogate reactor models under trust region strategies. <i>AICHE Journal</i> , 2021 , 67,	3.6	5
115	A trust region framework for heat exchanger network synthesis with detailed individual heat exchanger designs. <i>Computers and Chemical Engineering</i> , 2021 , 153, 107447	4	5
114	Simultaneous State and Parameter Estimation using Robust Receding-horizon Nonlinear Kalman Filter. <i>IFAC-PapersOnLine</i> , 2019 , 52, 10-15	0.7	4
113	Adaptive horizon economic nonlinear model predictive control. <i>Journal of Process Control</i> , 2020 , 92, 108	 3-31.918	4
112	Three-Dimensional Aircraft Conflict Resolution Based on Smoothing Methods. <i>Journal of Guidance, Control, and Dynamics</i> , 2016 , 39, 1481-1490	2.1	4

111	A first-order convergence analysis of trust-region methods with inexact Jacobians and inequality constraints. <i>Optimization Methods and Software</i> , 2012 , 27, 373-389	1.3	4
110	Barrier NLP methods with structured regularization for optimization of degenerate optimization problems. <i>Computers and Chemical Engineering</i> , 2013 , 57, 24-29	4	4
109	Numerical experiments with an inexact Jacobian trust-region algorithm. <i>Computational Optimization and Applications</i> , 2011 , 48, 255-271	1.4	4
108	Kinetic Modeling of Semi-Interpenetrating Polymer Network (SIPN) Process - A Comprehensive Study on the Case of Polyethylene/Polystyrene Semi-I IPN. <i>Macromolecular Theory and Simulations</i> , 2011 , 20, 146-165	1.5	4
107	A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2007 , 40, 19-28		4
106	APPLICATION OF OPTIMIZATION ALGORITHMS TO NONLINEAR MPC. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2002 , 35, 369-374		4
105	Advanced Modeling and Control of a Solid Sorbent-Based CO2 Capture Process. <i>IFAC-PapersOnLine</i> , 2016 , 49, 633-638	0.7	4
104	A parallel function evaluation approach for solution to large-scale equation-oriented models. <i>Computers and Chemical Engineering</i> , 2016 , 93, 309-322	4	4
103	Reduced Hessian based parameter selection and estimation with simultaneous collocation approach. <i>AICHE Journal</i> , 2020 , 66, e16242	3.6	4
102	Continuous reactor network design for rigid polyol production. <i>Chemical Engineering Science</i> , 2021 , 230, 116189	4.4	4
101	A Smooth, Square Flash Formulation for Equation-Oriented Flowsheet Optimization. <i>Computer Aided Chemical Engineering</i> , 2018 , 871-876	0.6	4
100	Energy-efficient CO 2 liquefaction for oxy-combustion power plant with ASU-CPU integration enhanced by cascaded sub-ambient energy utilization and waste heat recovery. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 61, 124-137	4.2	3
99	Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature. <i>AIP Advances</i> , 2017 , 7, 056520	1.5	3
98	Trajectory Optimization for Planetary Multi-Point Powered Landing. IFAC-PapersOnLine, 2017, 50, 8291	-82 9 6	3
97	Degeneracy Hunter: An Algorithm for Determining Irreducible Sets of Degenerate Constraints in Mathematical Programs. <i>Computer Aided Chemical Engineering</i> , 2015 , 809-814	0.6	3
96	On an inexact trust-region SQP-filter method for constrained nonlinear optimization. <i>Computational Optimization and Applications</i> , 2016 , 63, 613-638	1.4	3
95	Nonlinear Optimization of Detailed Heat Exchanger Models with Phase Change. <i>Computer Aided Chemical Engineering</i> , 2019 , 151-156	0.6	3
94	An Atomistic Study of Perfluoropolyether Lubricant Thermal Stability in Heat Assisted Magnetic Recording. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3748-3751	2	3

93	Structured regularization for barrier NLP solvers. <i>Computational Optimization and Applications</i> , 2017 , 66, 401-424	1.4	3
92	An optimization-based undeflated PLS (OUPLS) method to handle missing data in the training set. <i>Journal of Chemometrics</i> , 2014 , 28, 575-584	1.6	3
91	Dynamic Optimization of Aeration Operations for a Benchmark Wastewater Treatment Plant. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 14189-14194		3
90	Hierarchical Multiscale Modeling Method for Head/Disk Interface. <i>IEEE Transactions on Magnetics</i> , 2011 , 47, 87-93	2	3
89	Large-scale nonlinear programming: an integrating framework for enterprise-wide dynamic optimization. <i>Computer Aided Chemical Engineering</i> , 2007 , 24, 575-582	0.6	3
88	Chemical Reactor Network Targeting and Integration: An Optimization Approach. <i>Advances in Chemical Engineering</i> , 1996 , 23, 247-300	0.6	3
87	rSQP++: An Object-Oriented Framework for Successive Quadratic Programming. <i>Lecture Notes in Computational Science and Engineering</i> , 2003 , 316-330	0.3	3
86	Receding Horizon Optimization Method for Solving the Cops and Robbers Problems in a Complex Environment with Obstacles. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2020 , 100, 83-112	2.9	3
85	Heat Exchanger Network Optimization including Detailed Heat Exchanger Models using Trust Region Method. <i>Computer Aided Chemical Engineering</i> , 2020 , 48, 1051-1056	0.6	3
84	Economic NMPC Strategies for Solid Sorbent-Based CO2 Capture. IFAC-PapersOnLine, 2018, 51, 103-108	3 o.7	3
83	Integrated Parameter Mapping and Real-Time Optimization for Load Changes in High-Temperature Gas-Cooled Pebble Bed Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 9171-9184	3.9	3
82	Implications of dimensional analysis in bioreactor models: Parameter estimation and identifiability. <i>Chemical Engineering Journal</i> , 2021 , 417, 129220	14.7	3
81	A reduced regularization strategy for economic NMPC. Journal of Process Control, 2019, 73, 46-57	3.9	2
80	Reduced order models for dynamic molecular weight distribution in polymerization processes. <i>Computers and Chemical Engineering</i> , 2019 , 126, 280-291	4	2
79	Nonlinear Optimization Strategies for Process Separations and Process Intensification. <i>Chemie-Ingenieur-Technik</i> , 2020 , 92, 867-878	0.8	2
78	Optimal polymer grade transitions for fluidized bed reactors. <i>Journal of Process Control</i> , 2020 , 88, 86-10	06 .9	2
77	Rheological Properties of PFPE Lubricants at Elevated Temperatures. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	2
76	A General Framework for Sensitivity-Based Optimal Control and State Estimation. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 787-792	0.6	2

75	KIPET IAn Open-Source Kinetic Parameter Estimation Toolkit. <i>Computer Aided Chemical Engineering</i> , 2019 , 47, 299-304	0.6	2
74	Reduced model trust region methods for embedding complex simulations in optimization problems. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 773-778	0.6	2
73	Equation-Oriented Optimization of Cryogenic Systems for Coal Oxycombustion Power Plants. <i>Computer Aided Chemical Engineering</i> , 2014 , 501-506	0.6	2
72	An efficient nonlinear programming strategy for PCA models with incomplete data sets. <i>Journal of Chemometrics</i> , 2010 , 24, n/a-n/a	1.6	2
71	On-Line Implementation of Nonlinear MPC: An Experimental Case Study. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2000 , 33, 707-712		2
70	Moving-horizon State Estimation with Gross Error Detection for a Hydroformylation Mini-plant. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 1485-1490	0.6	2
69	Optimal Start-Up of Air Separation Processes using Dynamic Optimization with Complementarity Constraints. <i>Computer Aided Chemical Engineering</i> , 2020 , 48, 1147-1152	0.6	2
68	A Trust-Region Framework for Real-Time Optimization with Structural Process-Model Mismatch. <i>Vietnam Journal of Mathematics</i> , 2020 , 48, 809-830	0.5	2
67	Sensitivity-Assisted multistage nonlinear model predictive control: Robustness, stability and computational efficiency. <i>Computers and Chemical Engineering</i> , 2021 , 148, 107269	4	2
66	A modified collocation modeling framework for dynamic evolution of molecular weight distributions in general polymer kinetic systems. <i>Chemical Engineering Science</i> , 2021 , 237, 116519	4.4	2
65	Nonlinear Programming Formulations for Nonlinear and Economic Model Predictive Control. <i>Control Engineering</i> , 2019 , 465-489	1	2
64	Robust optimization of solid-liquid batch reactors under parameter uncertainty. <i>Chemical Engineering Science</i> , 2020 , 212, 115170	4.4	2
63	Generalized initialization for the dynamic simulation and optimization of grade transition processes using two-dimensional collocation. <i>AICHE Journal</i> , 2021 , 67,	3.6	2
62	Heat exchanger network synthesis with detailed exchanger designs I. Hybrid optimization strategy for synthesis of heat exchanger networks. <i>AICHE Journal</i> , 2021 , 67,	3.6	2
61	Quasi-Infinite Adaptive Horizon Nonlinear Model Predictive Control. IFAC-PapersOnLine, 2018, 51, 506-	5 1 5/ ₇	2
60	A Nested Schur decomposition approach for multiperiod optimization of chemical processes. <i>Computers and Chemical Engineering</i> , 2021 , 155, 107509	4	2
59	Adaptive Scenario Generation for Multistage NMPC with Shrinking Horizons. <i>IFAC-PapersOnLine</i> , 2019 , 52, 586-591	0.7	1
58	Batch and Moving Horizon Estimation for Systems subjected to Non-additive Stochastic Disturbances. <i>IFAC-PapersOnLine</i> , 2019 , 52, 16-21	0.7	1

(2020-2019)

57	Optimal Grade Transitions in a Gas-phase Polymerization Fluidized Bed Reactor. <i>IFAC-PapersOnLine</i> , 2019 , 52, 448-453	0.7	1
56	Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems. <i>Computational Optimization and Applications</i> , 2018 , 70, 321-350	1.4	1
55	Development of a Moving Window Maximum Likelihood Parameter Estimator and its Application on Ideal Reactive Distillation System. <i>IFAC-PapersOnLine</i> , 2016 , 49, 484-489	0.7	1
54	Physics-Based Surrogate Models for Optimal Control of a CO2 Methanation Reactor. <i>Computer Aided Chemical Engineering</i> , 2017 , 40, 127-132	0.6	1
53	Chapter 11: Direct Transcription with Moving Finite Elements 2012 , 233-252		1
52	Perfluoropolyether Lubricant Interactions With Novel Overcoat via Coarse-Grained Molecular Dynamics. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 4277-4280	2	1
51	Atomistically Tuning Lubricant Adhesion on Carbon Overcoat Surface. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 4273-4276	2	1
50	Advanced-multi-step Nonlinear Model Predictive Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 426-431		1
49	Mathematics in Chemical Engineering 2006,		1
48	An MPEC formulation for dynamic optimization of distillation operations. <i>Computers and Chemical Engineering</i> , 2004 , 28, 2037-2037	4	1
47	A Tool to Analyze Robust Stability for Constrained MPC. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 487-492		1
46	MHE Based State and Parameter Estimation for Systems subjected to Non-Gaussian Disturbances. <i>IFAC-PapersOnLine</i> , 2020 , 53, 5940-5945	0.7	1
45	Prediction of the Thermal Runaway Limit and Optimal Operation of Heat Transfer-Limited, Fixed-Bed Reactor Systems. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 15087-15094	3.9	1
44	Interactive Multiobjective Optimization of Superstructure SMB Processes. <i>Lecture Notes in Economics and Mathematical Systems</i> , 2009 , 221-230	0.4	1
43	On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming 2006 , 106, 25		1
42	A TRUST REGION STRATEGY FOR NEWTON-TYPE PROCESS CONTROL 1994 , 267-272		1
41	Simplified MFE with power-change adaption strategy for the dynamic optimization of HTR-PM. <i>Computer Aided Chemical Engineering</i> , 2012 , 1301-1305	0.6	1
40	Sensitivity-assisted Robust Nonlinear Model Predictive Control with Scenario Generation. <i>IFAC-PapersOnLine</i> , 2020 , 53, 7204-7209	0.7	1

39	Dynamic optimization for gas blending in pipeline networks with gas interchangeability control. <i>AICHE Journal</i> , 2020 , 66, e16908	3.6	1
38	Advanced-step multistage nonlinear model predictive control: Robustness and stability. <i>Journal of Process Control</i> , 2020 , 85, 15-29	3.9	1
37	Semi-infinite programming yields optimal disturbance model for offset-free nonlinear model predictive control. <i>Journal of Process Control</i> , 2021 , 101, 35-51	3.9	1
36	A Unified Framework for Kinetic Parameter Estimation Based on Spectroscopic Data with or without Unwanted Contributions. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 13651-13	6 <i>6</i> 3 ⁹	1
35	Heat exchanger network synthesis with detailed exchanger designs: Part 1. A discretized differential algebraic equation model for shell and tube heat exchanger design. <i>AICHE Journal</i> , 2021 , 67,	3.6	1
34	Optimization of Graded Bed Reactors for Syngas to Olefin (STO) Processes. <i>Computer Aided Chemical Engineering</i> , 2021 , 50, 115-121	0.6	1
33	Surrogate Equations of State for Equation-Oriented Optimization of Polymerization Processes. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 781-786	0.6	1
32	One way separation principle for a class of nonlinear observers and the robust stability analysis. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 157-162		Ο
31	Multiscale modeling and nonlinear model predictive control for flue gas desulfurization. <i>Chemical Engineering Science</i> , 2022 , 252, 117451	4.4	0
30	Parameter estimation with improved model prediction for over-parametrized nonlinear systems. <i>Computers and Chemical Engineering</i> , 2022 , 157, 107601	4	O
29	A fast, fully distributed nonlinear model predictive control algorithm with parametric sensitivity through Jacobi iteration. <i>Journal of Process Control</i> , 2022 , 110, 133-153	3.9	0
28	Nonlinear Model Predictive Control of the Hydraulic Fracturing Process. <i>IFAC-PapersOnLine</i> , 2020 , 53, 11428-11433	0.7	O
27	Advanced-multi-step Moving Horizon Estimation. IFAC-PapersOnLine, 2021, 54, 269-274	0.7	0
26	Optimization of pressure swing adsorption via a trust-region filter algorithm and equilibrium theory. <i>Computers and Chemical Engineering</i> , 2021 , 151, 107340	4	O
25	Modular gas-to-liquids process with membrane steam-methane reformer and Fischer Tropsch reactive distillation. <i>AICHE Journal</i> , e17467	3.6	0
24	Real-time refinery optimization with reduced-order fluidized catalytic cracker model and surrogate-based trust region filter method. <i>Computers and Chemical Engineering</i> , 2021 , 153, 107455	4	O
23	Kinetic model development and Bayesian uncertainty quantification for the complete reduction of Fe-based oxygen carriers with CH4, CO, and H2 for chemical looping combustion. <i>Chemical Engineering Science</i> , 2022 , 252, 117512	4.4	0
22	Kinetic parameter estimation with nonlinear mixed-effects models. <i>Chemical Engineering Journal</i> , 2022 , 136319	14.7	O

21	Near-optimal time series sampling based on the reduced Hessian. AICHE Journal, 2020, 66, e16248	3.6
20	Physiochemical Response of Organic Molecules in Head-Disk Interface Under Heat-Assisted Magnetic Recording Environment. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2
19	A Simultaneous Parameter and State Estimator for Polymerization Process Based on Molecular Weight Distribution. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 1117-1122	0.6
18	Integrated Dynamic Optimization and Scheduling of Polymerization Processes with First Principle Models. <i>Chemie-Ingenieur-Technik</i> , 2017 , 89, 1490-1502	0.8
17	Trajectory Bounds of Input-to-State Stability for Nonlinear Model Predictive Control**This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program Grant No. DGE1252522. The first author would also like to thank the Pittsburgh chapter of	0.7
16	the ARCS Foundation and the Choctaw Nation of Oklahoma for generous support MPCCs and ROMS: New Paradigms for Multi-scale Process Optimization. <i>Computer Aided Chemical Engineering</i> , 2014 , 34, 75-87	0.6
15	Structured regularization in barrier NLP for optimization models with dependent constraints. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1502-1506	0.6
14	Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example 2012 , 245-264	
13	Optimal design of non-linear Temperature Programmed Reduction (TPR) experiments. <i>Computer Aided Chemical Engineering</i> , 2009 , 26, 609-613	0.6
12	A Flexible Identification Strategy for DABNet Models. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2000 , 33, 833-838	
11	Dynamic Modeling and Optimization of Batch Crystallization Processes. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1999 , 32, 6621-6626	
10	Development of a Robust Receding-Horizon Nonlinear Kalman Filter Using M-Estimators. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 1808-1829	3.9
9	The Il Exact Penalty-Barrier Phase for Degenerate Nonlinear Programming Problems in Ipopt. <i>IFAC-PapersOnLine</i> , 2020 , 53, 6496-6501	0.7
8	Fast cooperative distributed model predictive control based on parametric sensitivity. <i>IFAC-PapersOnLine</i> , 2020 , 53, 6019-6024	0.7
7	Dynamic Real-time Optimization Under Uncertainty of a Hydroformylation Mini-plant. <i>Computer Aided Chemical Engineering</i> , 2016 , 2337-2342	0.6
6	Distributed Dynamic Optimization for Chemical Process Networks Based on Differential Games. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 2441-2456	3.9
5	Simultaneous orthogonal collocation decomposition method for extended Lion and Man problems. <i>Optimization and Engineering</i> , 2020 , 21, 973-1017	2.1
4	Optimization Opportunities in Product Development: Perspective from A Manufacturing Company. <i>Computer Aided Chemical Engineering</i> , 2019 , 47, 275-286	0.6

4.4

3	Pharmaceutical Process. <i>Organic Process Research and Development</i> , 2021 , 25, 373-383	3.9
2	DonBsearchBolve! Process optimization modeling with IDAES 2022 , 33-55	
-r	Generalized Parameter Estimation Method for Model-Based Real-Time Optimization. Chemical	

Kinetic Parameter Estimation from Spectroscopic Data for a Multi-Stage Solid Liquid

Engineering Science, 2022, 117754