
Rainer Blasczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variances in Antiviral Memory T-Cell Repertoire of CD45RA- and CD62L-Depleted Lymphocyte Products Reflect the Need of Individual T-Cell Selection Strategies to Reduce the Risk of GvHD while Preserving Antiviral Immunity in Adoptive T-Cell Therapy. Transfusion Medicine and Hemotherapy, 2022, 49, 30-43.	0.7	2
2	Prolonged storage of purified granulocyte concentrates: Introduction of a new purification method. Transfusion, 2022, 62, 194-204.	0.8	5
3	Antiviral T-Cell Frequencies in a Healthy Population: Reference Values for Evaluating Antiviral Immune Cell Profiles in Immunocompromised Patients. Journal of Clinical Immunology, 2022, 42, 546-558.	2.0	6
4	Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. Journal of Personalized Medicine, 2022, 12, 40.	1.1	2
5	Enhancement of Antiviral T-Cell Responses by Vitamin C Suggests New Strategies to Improve Manufacturing of Virus-Specific T Cells for Adoptive Immunotherapy. Biology, 2022, 11, 536.	1.3	1
6	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	2.2	20
7	Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines, 2022, 10, 693.	1.4	1
8	Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 867042.	2.0	8
9	Heart transplantation across preformed donor-specific antibody barriers using a perioperative desensitization protocol. American Journal of Transplantation, 2022, 22, 2064-2076.	2.6	7
10	Low serum neutralizing anti-SARS-CoV-2 S antibody levels in mildly affected COVID-19 convalescent patients revealed by two different detection methods. Cellular and Molecular Immunology, 2021, 18, 936-944.	4.8	98
11	COVID-19 immune signatures reveal stable antiviral TÂcell function despite declining humoral responses. Immunity, 2021, 54, 340-354.e6.	6.6	177
12	Allogeneic BK Virus-Specific T-Cell Treatment in 2 Patients With Progressive Multifocal Leukoencephalopathy. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1020.	3.1	19
13	Induced dendritic cells co-expressing GM-CSF/IFN-α/tWT1 priming T and B cells and automated manufacturing to boost GvL. Molecular Therapy - Methods and Clinical Development, 2021, 21, 621-641.	1.8	5
14	Humoral and Cellular Immune Responses Against Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Human Coronaviruses After Single BNT162b2 Vaccination. Clinical Infectious Diseases, 2021, 73, 2000-2008.	2.9	30
15	Distribution of major lymphocyte subsets and memory T-cell subpopulations in healthy adults employing GLP-conforming multicolor flow cytometry. Leukemia, 2021, 35, 3021-3025.	3.3	10
16	Case Report: Convalescent Plasma Therapy Induced Anti-SARS-CoV-2 T Cell Expansion, NK Cell Maturation and Virus Clearance in a B Cell Deficient Patient After CD19 CAR T Cell Therapy. Frontiers in Immunology, 2021, 12, 721738.	2.2	5
17	Immunogenetics of xenotransplantation. International Journal of Immunogenetics, 2021, 48, 120-134.	0.8	12
18	Donors for SARS-CoV-2 Convalescent Plasma for a Controlled Clinical Trial: Donor Characteristics, Content and Time Course of SARS-CoV-2 Neutralizing Antibodies. Transfusion Medicine and Hemotherapy, 2021, 48, 137-147.	0.7	21

#	Article	IF	CITATIONS
19	Isolation, Cryopreservation, and Characterization of iPSC-Derived Megakaryocytes. Methods in Molecular Biology, 2021, 2180, 539-554.	0.4	1
20	Animal Models in Allogenic Solid Organ Transplantation. Transplantology, 2021, 2, 412-424.	0.3	5
21	Generation of HLA Universal Megakaryocytes and Platelets by Genetic Engineering. Frontiers in Immunology, 2021, 12, 768458.	2.2	7
22	Long-Lasting Immunity Against SARS-CoV-2: Dream or Reality?. Frontiers in Medicine, 2021, 8, 770381.	1.2	14
23	Genetic modification of limbs using ex vivo machine perfusion. Human Gene Therapy, 2021, , .	1.4	4
24	Genetic Modification of Limbal Stem Cells to Decrease Allogeneic Immune Responses. Frontiers in Immunology, 2021, 12, 747357.	2.2	3
25	Mothera ^{^,} child histocompatibility and risk of rheumatoid arthritis and systemic lupus erythematosus among mothers. Genes and Immunity, 2020, 21, 27-36.	2.2	1
26	Transfer of Hexon―and Pentonâ€selected adenovirusâ€specific T cells for refractory adenovirus infection after haploidentical stem cell transplantation. Transplant Infectious Disease, 2020, 22, e13201.	0.7	5
27	Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. International Journal of Molecular Sciences, 2020, 21, 7654.	1.8	2
28	CAR-T Cells Targeting Epstein-Barr Virus gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. Molecular Therapy - Oncolytics, 2020, 18, 504-524.	2.0	38
29	Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, 2020, 57, 102885.	2.7	109
30	CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. , 2020, 8, e000736.		27
31	The Loss of HLA-F/KIR3DS1 Ligation Is Mediated by Hemoglobin Peptides. International Journal of Molecular Sciences, 2020, 21, 8012.	1.8	4
32	Repeated Freezing Procedures Preserve Structural and Functional Properties of Amniotic Membrane for Application in Ophthalmology. International Journal of Molecular Sciences, 2020, 21, 4029.	1.8	18
33	NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain. International Journal of Molecular Sciences, 2020, 21, 4362.	1.8	25
34	Genetic Engineering of the Kidney to Permanently Silence MHC Transcripts During ex vivo Organ Perfusion. Frontiers in Immunology, 2020, 11, 265.	2.2	38
35	Generating low immunogenic pig pancreatic islet cell clusters for xenotransplantation. Journal of Cellular and Molecular Medicine, 2020, 24, 5070-5081.	1.6	14
36	High-intensity interval training in allogeneic adoptive T-cell immunotherapy – a big HIT?. Journal of Translational Medicine, 2020, 18, 148.	1.8	5

#	Article	IF	CITATIONS
37	Variation in the Human Leukocyte Antigen system and risk for endemic Burkitt lymphoma in northern Uganda. British Journal of Haematology, 2020, 189, 489-499.	1.2	4
38	Sixâ€year experience with treatment of early donorâ€specific antiâ€HLA antibodies in pediatric lung transplantation using a human immunoglobulinâ€based protocol. Pediatric Pulmonology, 2020, 55, 754-764.	1.0	5
39	Low immunogenic endothelial cells endothelialize the Left Ventricular Assist Device. Scientific Reports, 2019, 9, 11318.	1.6	14
40	Battle between Host Immune Cellular Responses and HCMV Immune Evasion. International Journal of Molecular Sciences, 2019, 20, 3626.	1.8	33
41	Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. , 2019, , .		5
42	The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics, 2019, 11, 536.	2.0	12
43	Inhibition of Heme Oxygenase-1 Activity Enhances Wilms Tumor-1-Specific T-Cell Responses in Cancer Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 482.	1.8	4
44	Silencing of HLA class I on primary human hepatocytes as a novel strategy for reduction in alloreactivity. Journal of Cellular and Molecular Medicine, 2019, 23, 5705-5714.	1.6	9
45	Robust Identification of Suitable T-Cell Subsets for Personalized CMV-Specific T-Cell Immunotherapy Using CD45RA and CD62L Microbeads. International Journal of Molecular Sciences, 2019, 20, 1415.	1.8	16
46	Releasing the concept of HLAâ€allele specific peptide anchors in viral infections: A nonâ€canonical naturally presented human cytomegalovirusâ€derived HLAâ€A*24:02 restricted peptide drives exquisite immunogenicit y. Hla, 2019, 94, 25-38.	0.4	2
47	HLA class II antibodies induce necrotic cell death in human endothelial cells via a lysosomal membrane permeabilization-mediated pathway. Cell Death and Disease, 2019, 10, 235.	2.7	19
48	HLA-F*01:01 presents peptides with N-terminal flexibility and a preferred length of 16 residues. Immunogenetics, 2019, 71, 353-360.	1.2	13
49	Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8+ T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia. International Journal of Molecular Sciences, 2019, 20, 1454.	1.8	6
50	HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. International Journal of Molecular Sciences, 2019, 20, 5572.	1.8	5
51	Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic <i>Ex Vivo</i> Lung Perfusion. Human Gene Therapy, 2019, 30, 485-496.	1.4	47
52	HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics, 2018, 70, 485-494.	1.2	15
53	HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain. Human Immunology, 2018, 79, 453-462.	1.2	47
54	Cord blood–derived T cells allow the generation of a more naÃ⁻ve tumorâ€reactive cytotoxic Tâ€cell phenotype. Transfusion, 2018, 58, 88-99.	0.8	27

#	Article	IF	CITATIONS
55	Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering. Tissue Engineering - Part A, 2018, 24, 432-447.	1.6	9
56	Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes. Oncotarget, 2018, 9, 4737-4757.	0.8	13
57	Selective Effects of mTOR Inhibitor Sirolimus on NaÃ⁻ve and CMV-Specific T Cells Extending Its Applicable Range Beyond Immunosuppression. Frontiers in Immunology, 2018, 9, 2953.	2.2	33
58	Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo>â^—</mml:mo>15:02. Journal of Immunology Research, 2018, 2018, 1-12.</mml:math 	0.9	19
59	Dissecting Epstein-Barr Virus-Specific T-Cell Responses After Allogeneic EBV-Specific T-Cell Transfer for Central Nervous System Posttransplant Lymphoproliferative Disease. Frontiers in Immunology, 2018, 9, 1475.	2.2	21
60	Large-scale production of megakaryocytes in microcarrier-supported stirred suspension bioreactors. Scientific Reports, 2018, 8, 10146.	1.6	29
61	Adoptive transfer of cellular immunity against cytomegalovirus by virus-specific lymphocytes from a third-party family donor. Bone Marrow Transplantation, 2018, 53, 1351-1355.	1.3	13
62	The polymorphism at residue 156 determines the HLA-B*35 restricted peptide repertoire during HCMV infection. Immunogenetics, 2018, 70, 639-646.	1.2	2
63	CD28 ^{null} pro-atherogenic CD4 T-cells explain the link between CMV infection and an increased risk of cardiovascular death. Theranostics, 2018, 8, 4509-4519.	4.6	36
64	Peptide Presentation Is the Key to Immunotherapeutical Success. , 2018, , .		2
65	Characterization of induced pluripotent stem cellâ€derived megakaryocyte lysates for potential regenerative applications. Journal of Cellular and Molecular Medicine, 2018, 22, 4545-4549.	1.6	5
66	HLA Class I Histocompatibility Antigen, Alpha Chain E. , 2018, , 2393-2401.		0
67	Repeated human leukocyte antigen mismatches in lung re-transplantation. Transplant Immunology, 2017, 40, 1-7.	0.6	4
68	Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Research and Therapy, 2017, 8, 66.	2.4	31
69	Differentiation of induced pluripotent stem cell–derived neutrophil granulocytes from common marmoset monkey (<i>Callithrix jacchus</i>). Transfusion, 2017, 57, 60-69.	0.8	5
70	Towards the Manufacture of Megakaryocytes and Platelets for Clinical Application. Transfusion Medicine and Hemotherapy, 2017, 44, 165-173.	0.7	24
71	RNA Interference as a Tool to Reduce the Risk of Rejection in Cell-Based Therapies. , 2016, , .		0
72	Comparative Analysis of Clinical-Scale IFN-γ-Positive T-Cell Enrichment Using Partially and Fully Integrated Platforms. Frontiers in Immunology, 2016, 7, 393.	2.2	27

#	Article	IF	CITATIONS
73	Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 2016, 22, 274-285.	1.9	74
74	lgM-Enriched Human Intravenous Immunoglobulin-Based Treatment of Patients With Early Donor Specific Anti-HLA Antibodies After Lung Transplantation. Transplantation, 2016, 100, 2682-2692.	0.5	20
75	Discovery of immunodominant T-cell epitopes reveals penton protein as a second immunodominant target in human adenovirus infection. Journal of Translational Medicine, 2016, 14, 286.	1.8	18
76	Understanding the obstacle of incompatibility at residue 156 within HLA-B*35 subtypes. Immunogenetics, 2016, 68, 247-260.	1.2	8
77	Human leucocyte antigens and pediatric autoimmune liver disease: diagnosis and prognosis. European Journal of Pediatrics, 2016, 175, 527-537.	1.3	16
78	The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Cly mismatch. Immunogenetics, 2016, 68, 29-41.	1.2	65
79	Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. Journal of Translational Medicine, 2015, 13, 240.	1.8	16
80	Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Research and Therapy, 2015, 6, 150.	2.4	33
81	HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response—Implications on HSCT Outcome. Stem Cells International, 2015, 2015, 1-12.	1.2	50
82	miR-145 Contributes to Hypertrophic Scarring of the Skin by Inducing Myofibroblast Activity. Molecular Medicine, 2015, 21, 296-304.	1.9	71
83	Oncogenic acidic nuclear phosphoproteins ANP32C/D are novel clients of heat shock protein 90. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2338-2348.	1.9	3
84	miR-145 Is a Promising Therapeutic Target to Prevent Cornea Scarring. Human Gene Therapy, 2015, 26, 698-707.	1.4	15
85	Cell-type-specific downregulation of heme oxygenase-1 by lipopolysaccharide via Bach1 in primary human mononuclear cells. Free Radical Biology and Medicine, 2015, 78, 224-232.	1.3	21
86	Embryonic stem cells of the non-human primate <i>Callithrix jacchus</i> can be differentiated into definitive endoderm by Activin-A but not IDE-1/2. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 473-479.	1.3	9
87	The c.503T>C Polymorphism in the Human KLRB1 Gene Alters Ligand Binding and Inhibitory Potential of CD161 Molecules. PLoS ONE, 2015, 10, e0135682.	1.1	8
88	Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation. PLoS ONE, 2015, 10, e0145306.	1.1	8
89	Red cell allo- and autoimmunisation in transfused sickle cell and cancer patients in Kenyatta National Hospital, Nairobi, Kenya. African Journal of Laboratory Medicine, 2015, 4, 297.	0.2	3
90	Variants of a Thermus aquaticus DNA Polymerase with Increased Selectivity for Applications in Allele- and Methylation-Specific Amplification. PLoS ONE, 2014, 9, e96640.	1.1	22

#	Article	IF	CITATIONS
91	PECAM-1-dependent heme oxygenase-1 regulation via an Nrf2-mediated pathway in endothelial cells. Thrombosis and Haemostasis, 2014, 111, 1077-1088.	1.8	20
92	HLA Class I Polymorphism and Tapasin Dependency. , 2014, , .		0
93	Overexpression of the pp32r1 (ANP32C) oncogene or its functional mutant pp32r1Y140H confers enhanced resistance to FTY720 (Finguimod). Cancer Biology and Therapy, 2014, 15, 289-296.	1.5	11
94	HLA-E: A Novel Player for Histocompatibility. Journal of Immunology Research, 2014, 2014, 1-7.	0.9	45
95	Soluble HLA Technology as a Strategy to Evaluate the Impact of HLA Mismatches. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	19
96	A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A*24 Allotypes. Journal of Immunology Research, 2014, 2014, 1-12.	0.9	14
97	Recombinant blood group proteins facilitate the detection of alloantibodies to highâ€prevalence antigens and reveal underlying antibodies: results of an international study. Transfusion, 2014, 54, 1823-1830.	0.8	13
98	Rapid generation of clinical-grade antiviral T cells: selection of suitable T-cell donors and GMP-compliant manufacturing of antiviral T cells. Journal of Translational Medicine, 2014, 12, 336.	1.8	52
99	Secreted β3-Integrin Enhances Natural Killer Cell Activity against Acute Myeloid Leukemia Cells. PLoS ONE, 2014, 9, e98936.	1.1	7
100	miR-155 Is Associated with the Leukemogenic Potential of the Class IV Granulocyte Colony-Stimulating Factor Receptor in CD34+ Progenitor Cells. Molecular Medicine, 2014, 20, 736-746.	1.9	13
101	Semaphorin 3 <scp>A</scp> alters endothelial cell immunogenicity by regulating <scp>C</scp> lass <scp>ll</scp> transactivator activity circuits. Transfusion, 2014, 54, 1961-1970.	0.8	4
102	Autocrine GM-CSF transcription in the leukemic progenitor cell line KG1a is mediated by the transcription factor ETS1 and is negatively regulated through SECTM1 mediated ligation of CD7. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1004-1013.	1.1	4
103	Secreted Semaphorin 5A Activates Immune Effector Cells and Is a Biomarker for Rheumatoid Arthritis. Arthritis and Rheumatology, 2014, 66, 1461-1471.	2.9	30
104	Prevention of rejection of allogeneic endothelial cells in a biohybrid lung by silencing HLA-class I expression. Biomaterials, 2014, 35, 8123-8133.	5.7	38
105	Evaluation of suitable target antigens and immunoassays for high-accuracy immune monitoring of cytomegalovirus and Epstein–Barr virus-specific T cells as targets of interest in immunotherapeutic approaches. Journal of Immunological Methods, 2014, 408, 101-113.	0.6	39
106	Monitoring dendritic cell and cytokine biomarkers during remission prior to relapse in patients with FLT3-ITD acute myeloid leukemia. Annals of Hematology, 2013, 92, 1079-1090.	0.8	33
107	Semaphorin 7A protein variants differentially regulate Tâ€cell activity. Transfusion, 2013, 53, 270-283.	0.8	8
108	CMV-, EBV- and ADV-Specific T Cell Immunity: Screening and Monitoring of Potential Third-Party Donors to Improve Post-Transplantation Outcome. Biology of Blood and Marrow Transplantation, 2013, 19, 1480-1492.	2.0	75

#	Article	IF	CITATIONS
109	Development of a single-antigen magnetic bead assay (SAMBA) for the sensitive detection of HPA-1a alloantibodies using tag-engineered recombinant soluble β3 integrin. Journal of Immunological Methods, 2013, 391, 72-80.	0.6	8
110	Dysregulation of cell cycle control caused by overexpression of the oncogene pp32r1 (ANP32C) and the Tyr>His mutant pp32r1Y140H. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1212-1221.	1.9	9
111	HLA-Universal Platelet Transfusions Prevent Platelet Refractoriness in a Mouse Model. Human Gene Therapy, 2013, 24, 1018-1028.	1.4	45
112	MHC Universal Cells Survive in an Allogeneic Environment after Incompatible Transplantation. BioMed Research International, 2013, 2013, 1-12.	0.9	28
113	Impaired Functionality of Antiviral T Cells in G-CSF Mobilized Stem Cell Donors: Implications for the Selection of CTL Donor. PLoS ONE, 2013, 8, e77925.	1.1	24
114	Major Histocompatibility Complex (MHC), PeptideCheck. , 2013, , 1169-1172.		0
115	Identity, Potency, <i>In Vivo</i> Viability, and Scaling Up Production of Lentiviral Vector-Induced Dendritic Cells for Melanoma Immunotherapy. Human Gene Therapy Methods, 2012, 23, 38-55.	2.1	18
116	IL-2 Upregulates CD86 Expression on Human CD4+ and CD8+ T Cells. Journal of Immunology, 2012, 188, 1620-1629.	0.4	19
117	Position 156 influences the peptide repertoire and tapasin dependency of human leukocyte antigen B*44 allotypes. Haematologica, 2012, 97, 98-106.	1.7	31
118	Residue 81 confers a restricted C-terminal peptide binding motif in HLA-B*44:09. Immunogenetics, 2012, 64, 663-668.	1.2	10
119	Integrase-defective lentiviral vectors encoding cytokines induce differentiation of human dendritic cells and stimulate multivalent immune responses in vitro and in vivo. Vaccine, 2012, 30, 5118-5131.	1.7	21
120	Scoring HLA Class I Mismatches by HistoCheck Does Not Predict Clinical Outcome in Unrelated Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 739-746.	2.0	34
121	Establishment of the reversible peptide-major histocompatibility complex (pMHC) class I Histamer technology: tool for visualization and selection of functionally active antigen-specific CD8+ T lymphocytes. International Immunology, 2012, 24, 561-572.	1.8	16
122	Induced Pluripotent Stem Cells Generated from Adult Bone Marrow–Derived Cells of the Nonhuman Primate (Callithrix jacchus) Using a Novel Quad-Cistronic and Excisable Lentiviral Vector. Cellular Reprogramming, 2012, 14, 485-496.	0.5	33
123	HSP70 Enhances Immunosuppressive Function of CD4+CD25+FoxP3+ T Regulatory Cells and Cytotoxicity in CD4+CD25a ^{^,} T Cells. PLoS ONE, 2012, 7, e51747.	1.1	71
124	Position 45 influences the peptide binding motif of HLA-B*44:08. Immunogenetics, 2012, 64, 245-249.	1.2	12
125	Adoptive T-cell immunotherapy from third-party donors: characterization of donors and set up of a T-cell donor registry. Frontiers in Immunology, 2012, 3, 410.	2.2	43
126	Preconditioning Therapy with Lentiviral Vector-Programmed Dendritic Cells Accelerates the Homeostatic Expansion of Antigen-Reactive Human T Cells in NOD.Rag1 ^{â^'/â^'} .IL-2rγc ^{â^'/â^'} mice. Human Gene Therapy, 2011, 22, 1209-1224.	1.4	14

#	Article	IF	CITATIONS
127	The T/NK cell co-stimulatory molecule SECTM1 is an IFN "early response gene―that is negatively regulated by LPS in Human monocytic cells. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1294-1301.	1.1	24
128	Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey. Biochemical and Biophysical Research Communications, 2011, 411, 317-322.	1.0	13
129	Mismatches outside exons 2 and 3 do not alter the peptide motif of the allele group B*44:02P. Human Immunology, 2011, 72, 1039-1044.	1.2	26
130	The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica, 2011, 96, 110-118.	1.7	42
131	Granulocyte–colonyâ€ s timulatory factor: a strong inhibitor of natural killer cell function. Transfusion, 2011, 51, 293-305.	0.8	45
132	Heat shock protein 70/peptide complexes: potent mediators for the generation of antiviral T cells particularly with regard to low precursor frequencies. Journal of Translational Medicine, 2011, 9, 175.	1.8	12
133	Soluble Recombinant CMVpp65 Spanning Multiple HLA Alleles for Reconstitution of Antiviral CD4+ and CD8+ T-Cell Responses After Allogeneic Stem Cell Transplantation. Journal of Immunotherapy, 2010, 33, 60-72.	1.2	9
134	Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology, 2010, 80, 1895-1903.	2.0	648
135	Generation of HLAâ€deficient platelets from hematopoietic progenitor cells. Transfusion, 2010, 50, 1690-1701.	0.8	51
136	Silencing the expression of platelet endothelial cell adhesion moleculeâ€1 prevents allogeneic Tâ€cell cytotoxicity. Transfusion, 2010, 50, 1988-2000.	0.8	3
137	The nature of peptides presented by an HLA class I low expression allele. Haematologica, 2010, 95, 1373-1380.	1.7	11
138	Correction of Wiskott-Aldrich Syndrome by Hematopoietic Stem Cell Gene Therapy. Blood, 2010, 116, 5-5.	0.6	4
139	Growth Characteristics of the Nonhuman Primate Embryonic Stem Cell Line Cjes001 Depending on Feeder Cell Treatment. Cloning and Stem Cells, 2009, 11, 225-233.	2.6	15
140	High-throughput minor histocompatibility antigen prediction. Bioinformatics, 2009, 25, 2411-2417.	1.8	11
141	Permanent silencing of NKC2A expression for cell-based therapeutics. Journal of Molecular Medicine, 2009, 87, 199-210.	1.7	36
142	Easy identification of antibodies to highâ€prevalence Scianna antigens and detection of admixed alloantibodies using soluble recombinant Scianna protein. Transfusion, 2009, 49, 2090-2096.	0.8	18
143	Discrimination of HLA null and low expression alleles by cytokine-induced secretion of recombinant soluble HLA. Molecular Immunology, 2009, 46, 1451-1457.	1.0	10
144	Recombinant blood group proteins for use in antibody screening and identification tests. Current Opinion in Hematology, 2009, 16, 473-479.	1.2	9

#	Article	IF	CITATIONS
145	Heat shock protein 70 (HSP70) induces cytotoxicity of T-helper cells. Blood, 2009, 113, 3008-3016.	0.6	74
146	Rapid detection of antiâ€Lu ^b with recombinant Lu ^b protein and the particle gel immunoassay. Transfusion, 2008, 48, 731-734.	0.8	9
147	Rapid detection of JMH antibodies with recombinant Sema7A (CD108) protein and the particle gel immunoassay. Transfusion, 2008, 48, 1151-1155.	0.8	16
148	Aberrant intracellular trafficking of a variant B glycosyltransferase. Transfusion, 2008, 48, 1898-1905.	0.8	18
149	Regulating MHC expression for cellular therapeutics. Transfusion, 2007, 47, 18-27.	0.8	27
150	The molecular diversity of Sema7A, the semaphorin that carries the JMH blood group antigens. Transfusion, 2007, 47, 133-146.	0.8	33
151	Prokaryotic versus eukaryotic recombinant Lutheran blood group protein for antibody identification. Transfusion, 2007, 47, 1630-1636.	0.8	15
152	Expansion of human cytomegalovirus-specific TÂlymphocytes from unfractionated peripheral blood mononuclear cells with artificial antigen-presenting cells. Transfusion, 2007, 47, 2143-2152.	0.8	12
153	Weak blood group B phenotypes may be caused by variations in the CCAATâ€binding factor/NF‥ enhancer region of the <i>ABO</i> gene. Transfusion, 2007, 47, 2330-2335.	0.8	27
154	Amino acid 95 causes strong alteration of peptide position PΩ in HLA-B*41 variants. Immunogenetics, 2007, 59, 253-259.	1.2	25
155	Implementing the Modular MHC Model for Predicting Peptide Binding. Methods in Molecular Biology, 2007, 409, 261-271.	0.4	4
156	A weak blood group A phenotype caused by a translation-initiator mutation in the ABO gene. Transfusion, 2006, 46, 434-440.	0.8	32
157	Aberrant expression of HLA-B*3565Q is associated with a disrupted disulfide bond. Immunogenetics, 2006, 58, 929-931.	1.2	12
158	A modular concept of HLA for comprehensive peptide binding prediction. Immunogenetics, 2006, 59, 25-35.	1.2	22
159	Class-, gene-, and group-specific HLA silencing by lentiviral shRNA delivery. Journal of Molecular Medicine, 2006, 84, 425-437.	1.7	44
160	Nondeletional <i>ABO</i> * <i>O</i> alleles frequently cause blood donor typing problems. Transfusion, 2005, 45, 1331-1334.	0.8	20
161	Missense mutations outside the catalytic domain of the ABO glycosyltransferase can cause weak blood group A and B phenotypes. Transfusion, 2005, 45, 1663-1669.	0.8	33
162	Nondeletional ABO*O alleles express weak blood group A phenotypes. Transfusion, 2005, 45, 359-365.	0.8	36

#	ARTICLE	IF	CITATIONS
163	ABO glycosyltransferases as potential source of minor histocompatibility antigens in allogeneic peripheral blood progenitor cell transplantation. Transfusion, 2005, 45, 960-968.	0.8	21
164	Peptide-binding motif of HLA-A*6603. Immunogenetics, 2005, 56, 769-772.	1.2	8
165	The Replacement Mutation in HLA-DRB1*1211 Affects a Likely Keystone Position. Human Immunology, 2005, 66, 1254-1257.	1.2	3
166	Efficient Transduction of Common Marmoset (Callithrix jacchus) Hematopoietic and Embryonic Stem Cells Using Foamyvirus Vectors Blood, 2005, 106, 5530-5530.	0.6	0
167	A single amino-acid polymorphism in pocketïز1⁄2A of HLA-A*6602 alters the auxiliary anchors compared with HLA-A*6601 ligands. Immunogenetics, 2004, 56, 83-88.	1.2	23
168	Systematic analysis of the ABO gene diversity within exons 6 and 7 by PCR screening reveals new ABO alleles. Transfusion, 2003, 43, 428-439.	0.8	55
169	The nature of diversity and diversification at the ABO locus. Blood, 2003, 102, 3035-3042.	0.6	117
170	The nature of introns 4-7 largely reflects the lineage specificity of HLA-A alleles. Immunogenetics, 2002, 54, 447-462.	1.2	9
171	A weak blood group A phenotype caused by a new mutation at theABOlocus. Transfusion, 2002, 42, 294-301.	0.8	24
172	The Noncoding Regions of HLA-DRB Uncover Interlineage Recombinations as a Mechanism of HLA Diversification. Journal of Immunology, 2000, 165, 5664-5670.	0.4	17
173	Relevance of HLA Expression Variants in Stem Cell Transplantation. , 0, , .		1
174	Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens. , 0, , .		4
175	Small Molecule/HLA Complexes Alter the Cellular Proteomic Content. , 0, , .		1