David Yankelevsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9036069/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous beam-type model for the static analysis of arching masonry walls. European Journal of Mechanics, A/Solids, 2022, 91, 104387.	2.1	2
2	Experimental study on one-way arching masonry specimens under monotonic and cyclic loads. Structures, 2022, 37, 1142-1156.	1.7	3
3	Analytical Modeling of Crack Widths and Cracking Loads in Structural RC Members. Infrastructures, 2022, 7, 40.	1.4	6
4	From impact of RC flat slabs in a building to its progressive collapse. International Journal of Protective Structures, 2022, 13, 439-466.	1.4	4
5	Optical fiber measurement of local strains in a ribbed bar. Structural Concrete, 2022, 23, 3383-3396.	1.5	2
6	Evaluation of punching shear design criteria to prevent progressive collapse of RC flat slabs. International Journal of Protective Structures, 2021, 12, 174-205.	1.4	5
7	The effect of the loading system on the modulus of rupture of a rectangular glass plate. Construction and Building Materials, 2021, 271, 121585.	3.2	2
8	Nonlinear Rigid–Flexible Multibody Modeling of Arching Masonry Walls Subjected to Blast Loading. Journal of Engineering Mechanics - ASCE, 2021, 147, .	1.6	3
9	Predicting the circumferential strains on a cylindrical concrete specimen during a pullâ€out test. Structural Concrete, 2021, 22, 3026-3041.	1.5	1
10	Shearing of infill masonry walls under lateral and vertical loading. Journal of Building Engineering, 2021, 38, 102147.	1.6	4
11	Simulation of buried cylindrical/spherical explosions in a soil medium using the semiâ€analytical solution of a cavity expansion problem. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 2078-2101.	1.7	1
12	Dynamic punching shear of impacting RC flat slabs with drop panels. Engineering Failure Analysis, 2021, 129, 105682.	1.8	11
13	The effect of local rebar geometry on global strain measurements in pull out tests. Structural Concrete, 2020, 21, 413-427.	1.5	4
14	Size effect of the modulus of rupture in float glass plates. Structures, 2020, 27, 1637-1645.	1.7	4
15	Nonlinear Features of the Bond-Slip Ascending Branch. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	5
16	Constant deceleration approaches for penetration analysis of rigid projectile into concrete: Revisited. International Journal of Protective Structures, 2020, 11, 515-532.	1.4	9
17	The embedment of a high velocity rigid ogive nose projectile into a concrete target. International Journal of Impact Engineering, 2020, 144, 103631.	2.4	13
18	Response and closure to: A comment on "Constant deceleration approach for the penetration analysis of rigid projectiles into concrete targets: Revisited―by D.Z. Yankelevsky and V.R. Feldgun, Int. J. Prot. Struct., pp. 1–18 (2020). International Journal of Protective Structures, 2020, 11, 415-420.	1.4	0

DAVID YANKELEVSKY

#	Article	IF	CITATIONS
19	Role of Internal Damage Mechanisms in Controlling Bond-Slip Behavior in Pullout Tests in Concrete. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	12
20	TNT equivalency in an internal explosion event. Journal of Hazardous Materials, 2019, 374, 248-257.	6.5	19
21	Circumferential strains of a concrete specimen in a pullout test. Structural Concrete, 2019, 20, 986-995.	1.5	6
22	Blast and impact loading effects on glass and steel elements and materials. Thin-Walled Structures, 2019, 134, 384-394.	2.7	11
23	Direct Digital Image Analysis of Local Displacements and Strains in a Pull-out Test. Structures, 2018, 14, 230-242.	1.7	11
24	Effect of masonry joints on the behavior of infilled frames. Construction and Building Materials, 2018, 189, 144-156.	3.2	11
25	Analytical model for the dynamic response of blast-loaded arching masonry walls. Engineering Structures, 2018, 176, 49-63.	2.6	7
26	Determination of the interaction between a masonry wall and a confining frame. Engineering Structures, 2018, 167, 214-226.	2.6	18
27	Standard Testing of Glass Revisited - Experimental and Theoretical Aspects. Journal of Testing and Evaluation, 2018, 46, 1819-1831.	0.4	3
28	An analytical model for the out-of-plane response of URM walls to different lateral static loads. Engineering Structures, 2017, 136, 194-209.	2.6	11
29	Resistance of a concrete target to penetration of a rigid projectile - revisited. International Journal of Impact Engineering, 2017, 106, 30-43.	2.4	60
30	Fracture characteristics of laboratory-tested soda lime glass specimens. Canadian Journal of Civil Engineering, 2017, 44, 151-160.	0.7	10
31	Experimental evaluation of the interaction between a masonry infill wall and the surrounding frame. Strain, 2017, 53, e12250.	1.4	5
32	An Innovative Experimental Procedure to Study Local Rebar-Concrete Bond by Direct Observations and Measurements. Experimental Mechanics, 2016, 56, 673-682.	1.1	15
33	Prediction of annealed glass window response to blast loading. International Journal of Impact Engineering, 2016, 88, 189-200.	2.4	14
34	Strength prediction of annealed glass plates – A new model. Engineering Structures, 2014, 79, 244-255.	2.6	41
35	Behavior of High Ductility Cement Composite Beams under Low Impact. International Journal of Protective Structures, 2012, 3, 177-191.	1.4	6
36	One-dimensional analysis of tension stiffening in reinforced concrete with discrete cracks. Engineering Structures, 2008, 30, 206-217.	2.6	60

DAVID YANKELEVSKY

#	Article	IF	CITATIONS
37	On Potential Progressive Failure of Large-Panel Buildings. Journal of Structural Engineering, 2007, 133, 1591-1603.	1.7	8
38	Response of high performance concrete plates to impact of non-deforming projectiles. International Journal of Impact Engineering, 2007, 34, 1768-1779.	2.4	156
39	Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers. Structural Engineering and Mechanics, 2002, 13, 171-186.	1.0	12
40	Punching shear in concrete slabs. International Journal of Mechanical Sciences, 1999, 41, 1-15.	3.6	28
41	A two-phase one dimensional model for steel-concrete interaction. Computers and Structures, 1997, 65, 781-794.	2.4	9
42	Local response of concrete slabs to low velocity missile impact. International Journal of Impact Engineering, 1997, 19, 331-343.	2.4	96
43	ON ECCENTRIC SEISMIC POUNDING OF SYMMETRIC BUILDINGS. Earthquake Engineering and Structural Dynamics, 1996, 25, 219-233.	2.5	30
44	Uniaxial Behavior of Concrete in Cyclic Tension. Journal of Structural Engineering, 1989, 115, 166-182.	1.7	102
45	Cavitation phenomena in soil-projectile interaction. International Journal of Impact Engineering, 1985, 3, 167-178.	2.4	23
46	Vibrations of beams fully or partially supported on elastic foundations. Earthquake Engineering and Structural Dynamics, 1985, 13, 651-660.	2.5	35
47	New Finite Element for Bondâ€Slip Analysis. Journal of Structural Engineering, 1985, 111, 1533-1542.	1.7	21
48	The optimal shape of an earth penetrating projectile. International Journal of Solids and Structures, 1983, 19, 25-31.	1.3	30
49	A simplified analytical method for soil penetration analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4, 233-254.	1.7	54
50	Nose shape effect on high velocity soil penetration. International Journal of Mechanical Sciences, 1980, 22, 297-311.	3.6	39