

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9035516/publications.pdf Version: 2024-02-01

̊l회 ìuœ

#	Article	IF	CITATIONS
1	Brightener breakdown at the insoluble anode by active chlorine species during Cu electrodeposition. Journal of Industrial and Engineering Chemistry, 2022, 106, 198-204.	5.8	2
2	Influence of Reducing Agent on Chemical Decomposition of Bis(3- sulfopropyl) Disulfide (SPS) in Cu Plating Bath. Journal of the Electrochemical Society, 2021, 168, 032501.	2.9	4
3	In-line detection of Cu+-related species in aged Cu plating bath using flow cell-based electrochemical method. Journal of Electroanalytical Chemistry, 2021, 900, 115696.	3.8	2
4	Properties of nanocrystalline CuAg foil prepared via electrodeposition. Journal of Alloys and Compounds, 2021, 881, 160522.	5.5	6
5	Decomposition of polyethylene glycol (PEG) at Cu cathode and insoluble anode during Cu electrodeposition. Electrochimica Acta, 2020, 357, 136803.	5.2	13
6	Selective determination of PEG-PPG concentration in Cu plating bath with cyclic voltammetry stripping using iodide ion. Electrochimica Acta, 2020, 339, 135916.	5.2	9
7	High strength Cu foil without self-annealing prepared by 2M5S-PEG-SPS. Korean Journal of Chemical Engineering, 2019, 36, 981-987.	2.7	11
8	Observation of Bis-(3-sulfopropyl) Disulfide (SPS) Breakdown at the Cu Cathode and Insoluble Anode under Open-Circuit, Unpowered Closed-Circuit, and Electrolysis Conditions. Journal of the Electrochemical Society, 2019, 166, G61-G66.	2.9	11
9	Electrodeposition of Cu-Ag films in ammonia-based electrolyte. Journal of Alloys and Compounds, 2019, 775, 639-646.	5.5	12
10	Cyclic Voltammetry Stripping Analysis to Determine Iodide Ion Concentration in Cu Plating Bath. Journal of the Electrochemical Society, 2018, 165, H213-H218.	2.9	4
11	Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis. Applied Surface Science, 2018, 444, 303-311.	6.1	23
12	Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers. Applied Catalysis B: Environmental, 2018, 226, 289-294.	20.2	76
13	Electrodeposited Ag catalysts for the electrochemical reduction of CO 2 to CO. Applied Catalysis B: Environmental, 2017, 208, 35-43.	20.2	122
14	Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis. Journal of Power Sources, 2017, 347, 283-290.	7.8	54
15	An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer. Nanoscale, 2017, 9, 19045-19049.	5.6	44
16	Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells. Journal of Electrochemical Science and Technology, 2017, 8, 7-14.	2.2	2
17	Fabrication of Au Catalysts for Electrochemical Reduction of CO ₂ to Syngas. Journal of Nanoscience and Nanotechnology, 2016, 16, 10846-10852.	0.9	9
18	Communication—Monitoring the Average Molecular Weight of Polyethylene Glycol in an Acidic Cu Plating Bath. Journal of the Electrochemical Society, 2016, 163, D747-D749.	2.9	5

승회 최

#	Article	IF	CITATIONS
19	Porous indium electrode with large surface area for effective electroreduction of N 2 O. Electrochemistry Communications, 2016, 62, 13-16.	4.7	11
20	Accuracy Improvement in Cyclic Voltammetry Stripping Analysis of Thiourea Concentration in Copper Plating Baths. Journal of the Electrochemical Society, 2015, 162, H294-H300.	2.9	8
21	Electrochemical Behavior of Citric Acid and Its Influence on Cu Electrodeposition for Damascene Metallization. Journal of the Electrochemical Society, 2015, 162, D354-D359.	2.9	18
22	Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums. Electrochimica Acta, 2015, 163, 174-181.	5.2	42
23	Real-Time Observation of Cu Electroless Deposition: Synergetic Suppression Effect of 2,2 [′] -Dipyridyl and 3-N,N-Dimethylaminodithiocarbamoyl-1-propanesulfonic Acid. Journal of the Electrochemical Society, 2014, 161, D135-D140.	2.9	5
24	Effects of nitrogen atoms of benzotriazole and its derivatives on the properties of electrodeposited Cu films. Thin Solid Films, 2014, 550, 421-427.	1.8	9
25	Direct Cu Electrodeposition on Electroless Deposited NiWP Barrier Layer on SiO ₂ Substrate for All-Wet Metallization Process. Journal of the Electrochemical Society, 2014, 161, D756-D760.	2.9	8
26	Electrodeposition of Cu Films with Low Resistivity and Improved Hardness Using Additive Derivatization. Journal of the Electrochemical Society, 2014, 161, D749-D755.	2.9	15
27	The effect of inducing uniform Cu growth on formation of electroless Cu seed layer. Thin Solid Films, 2014, 564, 299-305.	1.8	5
28	Cu direct electrodeposition using step current for superfilling on Ru-Al2O3 layer. Electrochimica Acta, 2014, 147, 371-379.	5.2	1
29	Degradation of poly(ethylene glycol–propylene glycol) copolymer and its influences on copper electrodeposition. Journal of Electroanalytical Chemistry, 2014, 714-715, 85-91.	3.8	17
30	Seed Repair by Electrodeposition in Pyrophosphate Solution for Acid Cu Superfilling. Journal of the Electrochemical Society, 2013, 160, D202-D205.	2.9	12
31	Cu Bottom-Up Filling for Through Silicon Vias with Growing Surface Established by the Modulation of Leveler and Suppressor. Journal of the Electrochemical Society, 2013, 160, D3221-D3227.	2.9	43
32	Direct Cu Electrodeposition on Ta Using Pd Nanocolloids: Effect of Allyl Alcohol on the Formation of Seed Layer. Journal of the Electrochemical Society, 2013, 160, D3206-D3210.	2.9	1
33	Degradation of Bis(3-sulfopropyl) Disulfide and Its Influence on Copper Electrodeposition for Feature Filling. Journal of the Electrochemical Society, 2013, 160, D3179-D3185.	2.9	30
34	Real-Time Observation of Cu Electroless Deposition: Effect of EDTA on Removing of Cu Oxide and Adsorption of Formaldehyde. Journal of the Electrochemical Society, 2013, 160, D3134-D3138.	2.9	3
35	Real-Time Observation of Cu Electroless Deposition: Adsorption Behavior of PEG during Cu Electroless Deposition. Journal of the Electrochemical Society, 2013, 160, D3015-D3020.	2.9	7