Rosario Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9034925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antihypertensive effects of the flavonoid quercetin. Pharmacological Reports, 2009, 61, 67-75.	1.5	243
2	Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: Role of circulating factors and SIRT1. Mechanisms of Ageing and Development, 2009, 130, 518-527.	2.2	221
3	SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: Implications for vascular aging. Biochemical Pharmacology, 2013, 85, 1288-1296.	2.0	169
4	Antihypertensive effects of probiotics <i>Lactobacillus</i> strains in spontaneously hypertensive rats. Molecular Nutrition and Food Research, 2015, 59, 2326-2336.	1.5	156
5	Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radical Biology and Medicine, 2012, 52, 70-79.	1.3	154
6	Critical Role of the Interaction Gut Microbiota – Sympathetic Nervous System in the Regulation of Blood Pressure. Frontiers in Physiology, 2019, 10, 231.	1.3	148
7	Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1133-H1140.	1.5	138
8	Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. Journal of Hypertension, 2002, 20, 1843-1854.	0.3	124
9	Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis, 2009, 202, 58-67.	0.4	122
10	Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Shortâ€Chain Fatty Acids. Molecular Nutrition and Food Research, 2020, 64, e1900616.	1.5	113
11	Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed?. Molecular Nutrition and Food Research, 2011, 55, 1780-1790.	1.5	110
12	Chronic Hydroxychloroquine Improves Endothelial Dysfunction and Protects Kidney in a Mouse Model of Systemic Lupus Erythematosus. Hypertension, 2014, 64, 330-337.	1.3	110
13	The probiotic <i>Lactobacillus coryniformis</i> CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clinical Science, 2014, 127, 33-45.	1.8	109
14	Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis, 2009, 204, 34-39.	0.4	108
15	Glucuronidated Quercetin Lowers Blood Pressure in Spontaneously Hypertensive Rats via Deconjugation. PLoS ONE, 2012, 7, e32673.	1.1	104
16	Quercetin and Isorhamnetin Prevent Endothelial Dysfunction, Superoxide Production, and Overexpression of p47phox Induced by Angiotensin II in Rat Aorta. Journal of Nutrition, 2007, 137, 910-915.	1.3	98
17	Polyphenols restore endothelial function in DOCA-salt hypertension: Role of endothelin-1 and NADPH oxidase. Free Radical Biology and Medicine, 2007, 43, 462-473.	1.3	95
18	Wine Polyphenols Improve Endothelial Function in Large Vessels of Female Spontaneously Hypertensive Rats. Hypertension, 2008, 51, 1088-1095.	1.3	95

#	Article	IF	CITATIONS
19	Antihypertensive Effects of Probiotics. Current Hypertension Reports, 2017, 19, 26.	1.5	93
20	Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity. Clinical Science, 2007, 112, 183-191.	1.8	82
21	Antihypertensive Effects of Peroxisome Proliferator-Activated Receptor-β Activation in Spontaneously Hypertensive Rats. Hypertension, 2011, 58, 733-743.	1.3	80
22	The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: Correlation with beta-glucuronidase activity. Pharmacological Research, 2014, 89, 11-18.	3.1	73
23	<i>Lactobacillus fermentum</i> Improves Tacrolimusâ€Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Molecular Nutrition and Food Research, 2018, 62, e1800033.	1.5	71
24	The Probiotic <i>Lactobacillus fermentum</i> Prevents Dysbiosis and Vascular Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric Oxide Blockade. Molecular Nutrition and Food Research, 2018, 62, e1800298.	1.5	71
25	Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food and Function, 2016, 7, 584-593.	2.1	67
26	The Flavonoid Quercetin Reverses Pulmonary Hypertension in Rats. PLoS ONE, 2014, 9, e114492.	1.1	62
27	<i>Lactobacillus fermentum</i> CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB Journal, 2019, 33, 10005-10018.	0.2	60
28	Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Molecular and Cellular Biochemistry, 2004, 259, 91-99.	1.4	58
29	Epicatechin: Endothelial Function and Blood Pressure. Journal of Agricultural and Food Chemistry, 2012, 60, 8823-8830.	2.4	57
30	Activation of peroxisome proliferator-activated receptor-β/-Î′ (PPARβ/Î′) prevents endothelial dysfunction in type 1 diabetic rats. Free Radical Biology and Medicine, 2012, 53, 730-741.	1.3	57
31	Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British Journal of Pharmacology, 2020, 177, 2006-2023.	2.7	57
32	Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4637-4642.	3.3	56
33	Increased NADPH oxidase activity mediates spontaneous aortic tone in genetically hypertensive rats. European Journal of Pharmacology, 2006, 544, 97-103.	1.7	55
34	Chronic (Ââ^'Â)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. British Journal of Nutrition, 2011, 106, 1337-1348.	1.2	55
35	Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia. Cardiovascular Research, 2015, 106, 98-108.	1.8	55
36	Effects of Chronic Chrysin Treatment in Spontaneously Hypertensive Rats. Planta Medica, 2002, 68, 847-850.	0.7	54

#	Article	IF	CITATIONS
37	Effects of Quercetin Treatment on Vascular Function in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Comparative Study with Verapamil. Planta Medica, 2004, 70, 334-341.	0.7	51
38	Vasorelaxant Effects of the Bioflavonoid Chrysin in Isolated Rat Aorta. Planta Medica, 2001, 67, 567-569.	0.7	50
39	Endothelium-Dependent Vasodilator Effects of Peroxisome Proliferator-Activated Receptor β Agonists via the Phosphatidyl-Inositol-3 Kinase-Akt Pathway. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 554-561.	1.3	50
40	Cyclooxygenases 1, 2, and 3 and the Production of Prostaglandin I2: Investigating the Activities of Acetaminophen and Cyclooxygenase-2-Selective Inhibitors in Rat Tissues. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 642-647.	1.3	48
41	Probiotic <i>Bifidobacterium breve</i> prevents DOCAâ€salt hypertension. FASEB Journal, 2020, 34, 13626-13640.	0.2	45
42	Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food and Function, 2012, 3, 643.	2.1	43
43	Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clinical Science, 2015, 129, 823-837.	1.8	42
44	Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food and Function, 2015, 6, 409-414.	2.1	40
45	Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase. Clinical Science, 2011, 120, 321-333.	1.8	38
46	<scp>PPAR</scp> β activation restores the high glucoseâ€induced impairment of insulin signalling in endothelial cells. British Journal of Pharmacology, 2014, 171, 3089-3102.	2.7	32
47	Development of Urea and Thiourea Kynurenamine Derivatives: Synthesis, Molecular Modeling, and Biological Evaluation as Nitric Oxide Synthase Inhibitors. ChemMedChem, 2015, 10, 874-882.	1.6	31
48	Lack of beneficial metabolic effects of quercetin in adult spontaneously hypertensive rats. European Journal of Pharmacology, 2010, 627, 242-250.	1.7	30
49	Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats. Journal of Endocrinology, 2013, 216, 43-51.	1.2	30
50	The Role of Nrf2 Signaling in PPAR <i>β</i> /i>/ <i>Ĩ′</i> -Mediated Vascular Protection against Hyperglycemia-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	30
51	Vascular superoxide production by endothelin-1 requires Src non-receptor protein tyrosine kinase and MAPK activation. Atherosclerosis, 2010, 212, 78-85.	0.4	29
52	Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. Journal of Hypertension, 2015, 33, 1831-1844.	0.3	29
53	Effects of Visnadine on Rat Isolated Vascular Smooth Muscles. Planta Medica, 1997, 63, 233-236.	0.7	28
54	Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta. British Journal of Pharmacology, 1999, 127, 1539-1544.	2.7	28

#	Article	IF	CITATIONS
55	Activation of Peroxisome Proliferator Activator Receptor β/δ Improves Endothelial Dysfunction and Protects Kidney in Murine Lupus. Hypertension, 2017, 69, 641-650.	1.3	26
56	Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H189-H200.	1.5	26
57	Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochemical Pharmacology, 2016, 110-111, 25-36.	2.0	25
58	<i>Lactobacillus fermentum</i> CECT5716 prevents renal damage in the NZBWF1 mouse model of systemic lupus erythematosus. Food and Function, 2020, 11, 5266-5274.	2.1	25
59	Genistein restores caveolin-1 and AT-1 receptor expression and vascular function in large vessels of ovariectomized hypertensive rats. Menopause, 2007, 14, 933-940.	0.8	23
60	Effects of peroxisome proliferator-activated receptor-β activation in endothelin-dependent hypertension. Cardiovascular Research, 2013, 99, 622-631.	1.8	23
61	Glucuronidated Metabolites of the Flavonoid Quercetin do not Auto-Oxidise, do not Generate Free Radicals and do not Decrease Nitric Oxide Bioavailability. Planta Medica, 2008, 74, 741-746.	0.7	21
62	Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. British Journal of Pharmacology, 2021, 178, 3708-3729.	2.7	21
63	Mycophenolate mediated remodeling of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rats. Biomedicine and Pharmacotherapy, 2021, 135, 111189.	2.5	20
64	Probiotics Prevent Hypertension in a Murine Model of Systemic Lupus Erythematosus Induced by Toll-Like Receptor 7 Activation. Nutrients, 2021, 13, 2669.	1.7	19
65	Lack of synergistic interaction between quercetin and catechin in systemic and pulmonary vascular smooth muscle. British Journal of Nutrition, 2011, 105, 1287-1293.	1.2	18
66	Toll-like receptor 7-driven lupus autoimmunity induces hypertension and vascular alterations in mice. Journal of Hypertension, 2020, 38, 1322-1335.	0.3	18
67	Vascular and Central Activation of Peroxisome Proliferator-Activated Receptor-Â Attenuates Angiotensin II-Induced Hypertension: Role of RGS-5. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 151-163.	1.3	16
68	Thyroid hormones stimulate L-arginine transport in human endothelial cells. Journal of Endocrinology, 2018, 239, 49-62.	1.2	14
69	Role of endoplasmic reticulum stress in the protective effects of PPARβ/δ activation on endothelial dysfunction induced by plasma from patientsÂwith lupus. Arthritis Research and Therapy, 2017, 19, 268.	1.6	11
70	Changes in Gut Microbiota Induced by Doxycycline Influence in Vascular Function and Development of Hypertension in DOCA-Salt Rats. Nutrients, 2021, 13, 2971.	1.7	11
71	Mycophenolate Improves Brain–Gut Axis Inducing Remodeling of Gut Microbiota in DOCA-Salt Hypertensive Rats. Antioxidants, 2020, 9, 1199.	2.2	8
72	Gut Microbiota Has a Crucial Role in the Development of Hypertension and Vascular Dysfunction in Toll-like Receptor 7-Driven Lupus Autoimmunity. Antioxidants, 2021, 10, 1426.	2.2	8

#	Article	IF	CITATIONS
73	Trimethylamine N-Oxide Promotes Autoimmunity and a Loss of Vascular Function in Toll-like Receptor 7-Driven Lupus Mice. Antioxidants, 2022, 11, 84.	2.2	7
74	Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats. American Journal of Hypertension, 2015, 28, 1464-1472.	1.0	6
75	Involvement of Protein Kinase C and Na+/K+-ATPase in the Contractile Response Induced by Myricetin in Rat Isolated Aorta. Planta Medica, 2002, 68, 133-137.	0.7	5
76	PROTECTIVE EFFECTS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)-ß ACTIVATION ON LIPID-INDUCED ENDOTHELIAL DYSFUNCTION via CARNITINE PALMITOYL TRANSFERASE-1 UPREGULATION. Heart, 2014, 100, A9.1-A9.	1.2	0
77	180â€Endothelial microparticles prevent lipid-induced endothelial dysfunction through activation of AKT/ENOS signalling pathway and attenuation of oxidative stress. Heart, 2015, 101, A102.1-A102.	1.2	0
78	Vasoconstrictor and Pressor Effects of Des-Aspartate-Angiotensin I in Rat. Biomedicines, 2022, 10, 1230.	1.4	0