Hai-Lei Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9034924/publications.pdf Version: 2024-02-01

HALLEL CAO

#	Article	IF	CITATIONS
1	Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11, 310.	12.8	313
2	Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped–Carbon Composites Derived from in Situ Carbonization of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 10847-10854.	6.7	159
3	Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5231-5236.	8.0	110
4	Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics. Bioresource Technology, 2019, 277, 128-135.	9.6	87
5	In situ immobilization of ultra-fine Ag NPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Research, 2020, 179, 115882.	11.3	87
6	Lotus-Leaf-Derived Activated-Carbon-Supported Nano-CdS as Energy-Efficient Photocatalysts under Visible Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7871-7879.	6.7	81
7	CdZnS nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production. Chemical Communications, 2020, 56, 7765-7768.	4.1	67
8	Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar, 2022, 4, 1.	12.6	55
9	Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process. Journal of Hazardous Materials, 2009, 168, 895-900.	12.4	54
10	Engineering cation defect-mediated Z-scheme photocatalysts for a highly efficient and stable photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 7759-7766.	10.3	54
11	Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 2017, 5, 123.	3.6	45
12	Unveiling the visible–light–driven photodegradation pathway and products toxicity of tetracycline in the system of Pt/BiVO4 nanosheets. Journal of Hazardous Materials, 2022, 424, 127596.	12.4	35
13	One-Step Carbothermal Synthesis of Robust CdS@BPC Photocatalysts in the Presence of Biomass Porous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 16835-16842.	6.7	31
14	Localized surface plasmon resonance enhanced visible-light-driven CO ₂ photoreduction in Cu nanoparticle loaded ZnInS solid solutions. Nanoscale, 2020, 12, 15169-15174.	5.6	30
15	Two-Component Pharmaceutical Cocrystals Regulated by Supramolecular Synthons Comprising Primary N··Ĥ···O Interactions. Crystal Growth and Design, 2019, 19, 3-16.	3.0	24
16	Microwaveâ€assisted preparation of polylactide/organomontmorillonite nanocomposites via <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2010, 115, 1468-1473.	2.6	22
17	Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorganic Chemistry Communication, 2017, 84, 164-167.	3.9	20
18	Morphological control of CdS@AC nanocomposites for enhanced photocatalytic degradation of tetracycline antibiotics under visible irradiation. Inorganic Chemistry Communication, 2018, 95, 134-138.	3.9	19

Hai-Lei Cao

#	Article	IF	CITATIONS
19	Microwave-Enhanced Fenton Process for DMSO-Containing Wastewater. Environmental Engineering Science, 2010, 27, 271-280.	1.6	18
20	Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid. Journal of Environmental Sciences, 2010, 22, 56-61.	6.1	17
21	Microwaveâ€Assisted Synthesis of Poly(<scp>L</scp> â€lactic acid) via Direct Melt Polycondensation Using Solid Superâ€Acids. Macromolecular Chemistry and Physics, 2009, 210, 2058-2062.	2.2	15
22	Microwave-induced decontamination of mercury polluted soils at low temperature assisted with granular activated carbon. Chemical Engineering Journal, 2018, 351, 1067-1075.	12.7	12
23	Porous Graphitic Biomass Carbons as Sustainable Adsorption and Controlled Release Carriers for Atrazine Fixation. ACS Sustainable Chemistry and Engineering, 2019, 7, 20180-20189.	6.7	12
24	Mixed phase nano–CdS supported on activated biomass carbon as efficient visible light–driven photocatalysts. Environmental Science and Pollution Research, 2019, 26, 31055-31061.	5.3	9
25	Synthesis of Metal–Organic Framework Materials by Reflux: A Faster and Greener Pathway to Achieve Super-Hydrophobicity and Photocatalytic Application. Crystal Growth and Design, 2018, 18, 6609-6616.	3.0	7
26	Structural and topological regulation on cobalt coordination polymers with mixed ligands. Inorganic Chemistry Communication, 2017, 85, 5-8.	3.9	4
27	Assessment of tea garden soils at An'xi County in southeast China reveals a mild threat from contamination of potentially harmful elements. Royal Society Open Science, 2018, 5, 180050.	2.4	3