
Zhien Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9034521/publications.pdf Version: 2024-02-01

7HIEN WANC

#	Article	IF	CITATIONS
1	THE CLOUDSAT MISSION AND THE A-TRAIN. Bulletin of the American Meteorological Society, 2002, 83, 1771-1790.	3.3	1,845
2	CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research, 2008, 113, .	3.3	578
3	In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 2009, 2, 398-401.	12.9	406
4	Global distribution of cirrus clouds from CloudSat/Cloudâ€Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. Journal of Geophysical Research, 2008, 113, .	3.3	365
5	Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmospheric Chemistry and Physics, 2015, 15, 393-409.	4.9	315
6	CALIPSO/CALIOP Cloud Phase Discrimination Algorithm. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2293-2309.	1.3	261
7	Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmospheric Chemistry and Physics, 2008, 8, 5045-5060.	4.9	256
8	Classifying clouds around the globe with the CloudSat radar: 1â€year of results. Geophysical Research Letters, 2008, 35, .	4.0	241
9	A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. Journal of Geophysical Research, 2008, 113, .	3.3	225
10	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. I: singleâ€layer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 979-1002.	2.7	224
11	Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. Journal of Applied Meteorology and Climatology, 2001, 40, 1665-1682.	1.7	212
12	The 2015 Plains Elevated Convection at Night Field Project. Bulletin of the American Meteorological Society, 2017, 98, 767-786.	3.3	200
13	Thin Liquid Water Clouds: Their Importance and Our Challenge. Bulletin of the American Meteorological Society, 2007, 88, 177-190.	3.3	195
14	Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. Journal of Geophysical Research, 2010, 115, .	3.3	147
15	Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research, 2009, 114, .	3.3	141
16	Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign. Journal of Applied Meteorology and Climatology, 2013, 52, 1014-1030.	1.5	121
17	Single Aircraft Integration of Remote Sensing and In Situ Sampling for the Study of Cloud Microphysics and Dynamics. Bulletin of the American Meteorological Society, 2012, 93, 653-668.	3.3	116
18	Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloudâ€Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Journal of Geophysical Research, 2008, 113, .	3.3	111

#	Article	IF	CITATIONS
19	Toward understanding of differences in current cloud retrievals of ARM groundâ€based measurements. Journal of Geophysical Research, 2012, 117, .	3.3	107
20	Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nature Communications, 2017, 8, 15771.	12.8	107
21	Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data. Journal of Applied Meteorology and Climatology, 2002, 41, 218-229.	1.7	101
22	Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud. Journals of the Atmospheric Sciences, 2010, 67, 2417-2436.	1.7	96
23	Negative Aerosol loud <i>r</i> _{<i>e</i>} Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science, 2018, 5, 19-29.	2.6	96
24	Contrasting effects on deep convective clouds by different types of aerosols. Nature Communications, 2018, 9, 3874.	12.8	96
25	Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data. Journal of Applied Meteorology and Climatology, 2008, 47, 135-163.	1.5	91
26	A global view of midlevel liquidâ€layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. Journal of Geophysical Research, 2010, 115, .	3.3	91
27	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. II: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1003-1019.	2.7	84
28	Raman Lidar Measurements during the International H2O Project. Part I: Instrumentation and Analysis Techniques. Journal of Atmospheric and Oceanic Technology, 2006, 23, 157-169.	1.3	83
29	Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties. Journals of the Atmospheric Sciences, 2002, 59, 2291-2302.	1.7	81
30	An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice Clouds. Bulletin of the American Meteorological Society, 2007, 88, 191-204.	3.3	72
31	Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. Journal of Geophysical Research, 2011, 116, .	3.3	62
32	A new cloud and aerosol layer detection method based on micropulse lidar measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6788-6802.	3.3	59
33	Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmospheric Measurement Techniques, 2014, 7, 173-182.	3.1	55
34	Studying Altocumulus with Ice Virga Using Ground-Based Active and Passive Remote Sensors. Journal of Applied Meteorology and Climatology, 2004, 43, 449-460.	1.7	54
35	Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds. Journals of the Atmospheric Sciences, 2010, 67, 2437-2450.	1.7	54
36	Cloud and Aerosol Research Capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bulletin of the American Meteorological Society, 2001, 82, 1119-1138.	3.3	53

#	Article	IF	CITATIONS
37	Improved Radar Ice Water Content Retrieval Algorithms Using Coincident Microphysical and Radar Measurements. Journal of Applied Meteorology and Climatology, 2005, 44, 1391-1412.	1.7	48
38	In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds. Journals of the Atmospheric Sciences, 2010, 67, 2451-2468.	1.7	48
39	Understanding processes that control dust spatial distributions with global climate models and satellite observations. Atmospheric Chemistry and Physics, 2020, 20, 13835-13855.	4.9	47
40	Wyoming Cloud Lidar: instrument description and applications. Optics Express, 2009, 17, 13576.	3.4	46
41	Reassessing the Effect of Cloud Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. Journal of Climate, 2019, 32, 6197-6217.	3.2	46
42	Properties of individual contrails: a compilation of observations and some comparisons. Atmospheric Chemistry and Physics, 2017, 17, 403-438.	4.9	45
43	Continental Stratus Clouds: A Case Study Using Coordinated Remote Sensing and Aircraft Measurements. Journals of the Atmospheric Sciences, 1999, 56, 2345-2358.	1.7	43
44	Contrails to Cirrus—Morphology, Microphysics, and Radiative Properties. Journal of Applied Meteorology and Climatology, 2006, 45, 5-19.	1.5	43
45	Raman Lidar Measurements during the International H2O Project. Part II: Case Studies. Journal of Atmospheric and Oceanic Technology, 2006, 23, 170-183.	1.3	43
46	Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites. Journal of Geophysical Research, 2012, 117, .	3.3	42
47	CloudSat 2C″CE product update with a new <i>Z_e</i> parameterization in lidarâ€only region. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12198-12208.	3.3	42
48	Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model. Journal of Applied Meteorology and Climatology, 2002, 41, 620-628.	1.7	40
49	Formation and Spread of Aircraft-Induced Holes in Clouds. Science, 2011, 333, 77-81.	12.6	40
50	Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19. Bulletin of the American Meteorological Society, 2021, 102, E421-E445.	3.3	40
51	The Dryline on 22 May 2002 during IHOP_2002: Convective-Scale Measurements at the Profiling Site. Monthly Weather Review, 2006, 134, 294-310.	1.4	39
52	Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6128-6139.	3.3	39
53	Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems. Geophysical Research Letters, 2008, 35, .	4.0	37
54	The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution. Surveys in Geophysics, 2012, 33, 677-691.	4.6	37

#	Article	IF	CITATIONS
55	Global dust distribution from improved thin dust layer detection using Aâ€ŧrain satellite lidar observations. Geophysical Research Letters, 2015, 42, 620-628.	4.0	37
56	Comparison of Arctic clouds between European Center for Mediumâ€Range Weather Forecasts simulations and Atmospheric Radiation Measurement Climate Research Facility longâ€ŧerm observations at the North Slope of Alaska Barrow site. Journal of Geophysical Research, 2010, 115, .	3.3	35
57	Multiâ€layer arctic mixedâ€phase clouds simulated by a cloudâ€resolving model: Comparison with ARM observations and sensitivity experiments. Journal of Geophysical Research, 2008, 113, .	3.3	33
58	Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds. Geophysical Research Letters, 2012, 39, .	4.0	33
59	Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. Journal of Geophysical Research, 2005, 110, .	3.3	32
60	Challenges and Opportunities in Lidar Remote Sensing. Frontiers in Remote Sensing, 2021, 2, .	3.5	32
61	Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories. Atmospheric Chemistry and Physics, 2017, 17, 5973-5989.	4.9	31
62	Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmospheric Chemistry and Physics, 2018, 18, 4317-4327.	4.9	31
63	Aircraft-Induced Hole Punch and Canal Clouds. Bulletin of the American Meteorological Society, 2010, 91, 753-766.	3.3	30
64	Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer. Optics Express, 2013, 21, 17849.	3.4	30
65	Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape. Journals of the Atmospheric Sciences, 2003, 60, 873-891.	1.7	30
66	lce in Clouds Experiment—Layer Clouds. Part I: Ice Growth Rates Derived from Lenticular Wave Cloud Penetrations. Journals of the Atmospheric Sciences, 2011, 68, 2628-2654.	1.7	29
67	Aerosol impacts on cloud thermodynamic phase change over East Asia observed with CALIPSO and CloudSat measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1490-1501.	3.3	28
68	Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMEX-3. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	27
69	The Three-Dimensional Structure of Transatlantic African Dust Transport: A New Perspective from CALIPSO LIDAR Measurements. Advances in Meteorology, 2012, 2012, 1-9.	1.6	26
70	Climatology of cloud water content associated with different cloud types observed by Aâ€⊺rain satellites. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4196-4212.	3.3	26
71	Airborne compact rotational Raman lidar for temperature measurement. Optics Express, 2016, 24, A1210.	3.4	25
72	Microphysical properties of Antarctic polar stratospheric clouds and their dependence on tropospheric cloud systems. Journal of Geophysical Research, 2010, 115, .	3.3	24

#	Article	IF	CITATIONS
73	Impacts of Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of Arctic Mixedâ€Phase Clouds with NCAR CAM5. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13071-13090.	3.3	24
74	Modeling Dust in East Asia by CESM and Sources of Biases. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8043-8064.	3.3	23
75	Reassessing the Effect of Cloud Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part II: Atmospheric Heating. Journal of Climate, 2019, 32, 6219-6236.	3.2	23
76	A Refined Two-Channel Microwave Radiometer Liquid Water Path Retrieval for Cold Regions by Using Multiple-Sensor Measurements. IEEE Geoscience and Remote Sensing Letters, 2007, 4, 591-595.	3.1	22
77	Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations. Journals of the Atmospheric Sciences, 2014, 71, 3613-3635.	1.7	22
78	Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmospheric Research, 2014, 149, 58-69.	4.1	20
79	Diurnal aerosol variations do affect daily averaged radiative forcing under heavy aerosol loading observed in Hefei, China. Atmospheric Measurement Techniques, 2015, 8, 2901-2907.	3.1	20
80	Marine boundary layer structure as observed by A-train satellites. Atmospheric Chemistry and Physics, 2016, 16, 5891-5903.	4.9	20
81	The Relation between Nocturnal MCS Evolution and Its Outflow Boundaries in the Stable Boundary Layer: An Observational Study of the 15 July 2015 MCS in PECAN. Monthly Weather Review, 2018, 146, 3203-3226.	1.4	20
82	Improved calibration method for depolarization lidar measurement. Optics Express, 2013, 21, 14583.	3.4	18
83	Compact airborne Raman lidar for profiling aerosol, water vapor and clouds. Optics Express, 2014, 22, 20613.	3.4	18
84	Liquid–Ice Mass Partition in Tropical Maritime Convective Clouds. Journals of the Atmospheric Sciences, 2016, 73, 4959-4978.	1.7	17
85	Characteristics of vertical air motion in isolated convective clouds. Atmospheric Chemistry and Physics, 2016, 16, 10159-10173.	4.9	17
86	High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than â^'8†°C. Atmospheric Research, 2020, 233, 104719.	4.1	17
87	Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols. Applied Optics, 1997, 36, 1245.	2.1	16
88	Uncertainties in MODISâ€Based Cloud Liquid Water Path Retrievals at High Latitudes Due to Mixedâ€Phase Clouds and Cloud Top Height Inhomogeneity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,154.	3.3	16
89	Retrieval of Cloud Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6082-6098.	3.3	16
90	Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements. Applied Physics B: Lasers and Optics, 1996, 62, 143-147.	2.2	15

#	Article	IF	CITATIONS
91	A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophysical Research Letters, 2004, 31, .	4.0	15
92	Distinct Contributions of Ice Nucleation, Largeâ€Scale Environment, and Shallow Cumulus Detrainment to Cloud Phase Partitioning With NCAR CAM5. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1132-1154.	3.3	15
93	Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data. Journal of Meteorological Research, 2013, 27, 26-39.	1.0	14
94	Comparison of Antarctic and Arctic Singleâ€Layer Stratiform Mixedâ€Phase Cloud Properties Using Groundâ€Based Remote Sensing Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10186-10204.	3.3	14
95	The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by groundâ€based remote sensors at the ARM NSA site. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2867-2877.	3.3	14
96	Contrails of Small and Very Large Optical Depth. Journals of the Atmospheric Sciences, 2010, 67, 3065-3073.	1.7	13
97	Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method. Optics Express, 2015, 23, 14095.	3.4	13
98	Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences. Journals of the Atmospheric Sciences, 2016, 73, 3467-3487.	1.7	13
99	Evaluation of the Lidar–Radar Cloud Ice Water Content Retrievals Using Collocated in Situ Measurements. Journal of Applied Meteorology and Climatology, 2015, 54, 2087-2097.	1.5	12
100	Upper troposphere dust belt formation processes vary seasonally and spatially in the Northern Hemisphere. Communications Earth & Environment, 2022, 3, .	6.8	12
101	Ozone Destruction in Continental Stratus Clouds: An Aircraft Case Study. Journal of Applied Meteorology and Climatology, 2000, 39, 875-886.	1.7	11
102	Droplet Concentration and Spectral Broadening in Southeast Pacific Stratocumulus Clouds. Journals of the Atmospheric Sciences, 2017, 74, 719-749.	1.7	11
103	Evolution and Vertical Structure of an Undular Bore Observed on 20 June 2015 during PECAN. Monthly Weather Review, 2017, 145, 3775-3794.	1.4	10
104	On the freezing time of supercooled drops in developing convective clouds over tropical ocean. Atmospheric Research, 2018, 211, 30-37.	4.1	10
105	On factors controlling marine boundary layer aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3321-3334.	3.3	9
106	A Dryline in Southeast Wyoming. Part II: Airborne In Situ and Raman Lidar Observations. Monthly Weather Review, 2014, 142, 2961-2977.	1.4	8
107	A new method for estimating aerosol mass flux in the urban surface layer using LAS technology. Atmospheric Measurement Techniques, 2016, 9, 1925-1937.	3.1	8
108	Improving middle and high latitude cloud liquid water path measurements from MODIS. Atmospheric Research, 2020, 243, 105033.	4.1	8

#	Article	IF	CITATIONS
109	Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds. Journals of the Atmospheric Sciences, 2003, 60, 428-433.	1.7	7
110	Interactions between a Nocturnal MCS and the Stable Boundary Layer as Observed by an Airborne Compact Raman Lidar during PECAN. Monthly Weather Review, 2019, 147, 3169-3189.	1.4	7
111	Parameterization of the radiative properties of midlatitude high and middle level clouds. Geophysical Research Letters, 2001, 28, 729-732.	4.0	6
112	Retrieving the Polar Mixedâ€Phase Cloud Liquid Water Path by Combining CALIOP and IIR Measurements. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1755-1770.	3.3	4
113	Wildfire Smoke Observations in the Western United States from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part II: Vertical Structure and Plume Injection Height. Journal of Atmospheric and Oceanic Technology, 2022, 39, 559-572.	1.3	4
114	Cloud Type and Life Stage Dependency of Liquid–Ice Mass Partitioning in Mixed-Phase Clouds. Remote Sensing, 2022, 14, 1431.	4.0	4
115	lce crystal concentrations in wave clouds: dependencies on temperature, <i>D</i> > 0.5 μm aerosol particle concentration, and duration of cloud processing. Atmospheric Chemistry and Physics, 2015, 15, 6113-6125.	4.9	3
116	Performance of a compact elastic 355 nm airborne lidar in tropical and mid-latitude clouds. Proceedings of SPIE, 2016, , .	0.8	3
117	Convection initiation and bore formation following the collision of mesoscale boundaries over a developing stable boundary layer: a case study from PECAN. Monthly Weather Review, 2021, , .	1.4	3
118	<title>lce cloud microphysical property retrieval using airborne two-frequency radars</title> . , 2004, , .		2
119	Quantifying the Hygroscopic Growth of Marine Boundary Layer Aerosols by Satellite-Based and Buoy Observations. Journals of the Atmospheric Sciences, 2015, 72, 1063-1074.	1.7	2
120	Partitioning Ice Water Content from Retrievals and Its Application in Model Comparison. Journals of the Atmospheric Sciences, 2018, 75, 1105-1120.	1.7	2
121	Differences among three types of tropical deep convective clusters observed from A-Train satellites. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 253-261.	2.3	2
122	Wildfire Smoke Observations in the Western U.S. from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part I: Data Description and Methodology. Journal of Atmospheric and Oceanic Technology, 2022, , .	1.3	2
123	The Water Cycle across Scales. Bulletin of the American Meteorological Society, 2005, 86, 1743-1746.	3.3	1
124	Airborne Raman Lidar and its Applications for Atmospheric Process Studies. EPJ Web of Conferences, 2016, 119, 09002.	0.3	1
125	Cloud and Aerosol Interaction Observed in SKYNET Hefei Site in China. EPJ Web of Conferences, 2016, 119, 16013.	0.3	1
126	Recommendations for Improving U.S. NSF-Supported Airborne Microwave Radiometry. Bulletin of the American Meteorological Society, 2016, 97, 2257-2261.	3.3	1

#	Article	IF	CITATIONS
127	A new afterpulse correction for micro-pulse lidar to improve middle and upper tropospheric aerosol measurements. Optics Express, 0, , .	3.4	1
128	Preâ€activation of ice nucleating particles in deposition nucleation mode: Evidence from measurement using a static vacuum water vapor diffusion chamber in Xinjiang, China. Geophysical Research Letters, 0, , .	4.0	1
129	African dust impacts on mixed-phase and warm stratiform clouds observed from CALIPSO and CloudSat measurements. , 2013, , .		0
130	Aerosol property variations over global oceans as observed by the A-train satellites. , 2013, , .		0
131	Coarse particle and derived ice nuclei concentrations in the northern and southern subtropical middle troposphere. , 2013, , .		0
132	Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences. EPJ Web of Conferences, 2016, 119, 04009.	0.3	0
133	Global Dust Transport as Observed by A-Train Satellites. EPJ Web of Conferences, 2016, 119, 08010.	0.3	0
134	The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution. Space Sciences Series of ISSI, 2011, , 345-359.	0.0	0
135	Retrieval and Evaluation of Ice Water Content from the Airborne Wyoming Cloud Radar in Orographic Wintertime Clouds during SNOWNIE. Journal of Atmospheric and Oceanic Technology, 2021	1.3	0