Mauro AntÃ'nio Da Silva SÃ; Ravagnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9034241/publications.pdf

Version: 2024-02-01

1040056 1058476 16 418 9 14 g-index citations h-index papers 16 16 16 229 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Multiperiod Heat Exchanger Network Synthesis With Pinch-Based Strategies and Metaheuristics. Frontiers in Sustainability, 2022, 3, .	2.6	О
2	Parameters for cost estimation in shell and tube heat exchangers network synthesis: A systematic literature review on 30Âyears of research. Applied Thermal Engineering, 2022, 213, 118801.	6.0	2
3	Techno-economic Assessment of Syngas Production from Sugarcane Vinasse Compared to the Natural Gas Route: A Biorefinery Concept. Waste and Biomass Valorization, 2021, 12, 699-710.	3.4	5
4	Multi-objective optimization of the Brazilian industrial sugarcane scenario: a profitable and ecological approach. Clean Technologies and Environmental Policy, 2020, 22, 591-611.	4.1	8
5	Bi-objective optimization of a supply chain: identification of the key impact category and green management. Brazilian Journal of Chemical Engineering, 2020, 37, 157-171.	1.3	3
6	Heat exchanger network synthesis combining Simulated Annealing and Differential Evolution. Energy, 2019, 181, 654-664.	8.8	43
7	Heat exchanger networks retrofit with an extended superstructure model and a meta-heuristic solution approach. Computers and Chemical Engineering, 2019, 125, 380-399.	3.8	23
8	Optimization-based approach for maximizing profitability of bioethanol supply chain in Brazil. Computers and Chemical Engineering, 2018, 115, 121-132.	3.8	25
9	An Enhanced Stage-wise Superstructure for Heat Exchanger Networks Synthesis with New Options for Heaters and Coolers Placement. Industrial & Engineering Chemistry Research, 2018, 57, 2560-2573.	3.7	48
10	Financial Risk Management in Heat Exchanger Networks Considering Multiple Utility Sources with Uncertain Costs. Industrial & Engineering Chemistry Research, 2018, 57, 9831-9848.	3.7	6
11	Heat exchanger network synthesis using genetic algorithm and differential evolution. Computers and Chemical Engineering, 2018, 117, 82-96.	3.8	47
12	Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization. Energy, 2017, 139, 98-117.	8.8	15
13	Largeâ€scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization. AICHE Journal, 2017, 63, 1582-1601.	3.6	68
14	Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing. Computers and Chemical Engineering, 2016, 94, 370-386.	3.8	55
15	Optimal heat exchanger network synthesis using \hat{A} particle swarm optimization. Optimization and Engineering, 2010, 11, 459-470.	2.4	70
16	Economic and Environmental Feasibility of Photovoltaic Solar Energy in Industrial Processes. Environmental Progress and Sustainable Energy, 0, , .	2.3	0