
David Amitrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033891/publications.pdf Version: 2024-02-01

ΠΛΥΙΠ ΔΜΙΤΡΛΝ

#	Article	IF	CITATIONS
1	Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with thebvalue. Journal of Geophysical Research, 2003, 108, .	3.3	305
2	Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophysical Research Letters, 2005, 32, .	1.5	162
3	Brittle creep, damage, and time to failure in rocks. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	140
4	A new modeling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 2011, 52, 123-132.	2.8	112
5	Techniques, issues and advances in numerical modelling of landslide hazard. Bulletin - Societie Geologique De France, 2007, 178, 65-88.	0.9	94
6	From diffuse to localised damage through elastic interaction. Geophysical Research Letters, 1999, 26, 2109-2112.	1.5	92
7	Variability in the power-law distributions of rupture events. European Physical Journal: Special Topics, 2012, 205, 199-215.	1.2	84
8	Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses. Natural Hazards and Earth System Sciences, 2010, 10, 831-841.	1.5	82
9	Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth and Planetary Science Letters, 2012, 341-344, 86-93.	1.8	75
10	Fracture roughness and gouge distribution of a granite shear band. Journal of Geophysical Research, 2002, 107, ESE 19-1-ESE 19-16.	3.3	74
11	Rupture by damage accumulation in rocks. International Journal of Fracture, 2006, 139, 369-381.	1.1	57
12	Creep of a porous rock and associated acoustic emission under different hydrous conditions. Journal of Geophysical Research, 2009, 114, .	3.3	55
13	Damageâ€Based Timeâ€Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes. Journal of Geophysical Research F: Earth Surface, 2018, 123, 124-141.	1.0	54
14	Highâ€definition analysis of fluidâ€induced seismicity related to the mesoscale hydromechanical properties of a fault zone. Geophysical Research Letters, 2008, 35, .	1.5	51
15	Failure as a critical phenomenon in a progressive damage model. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P01013.	0.9	49
16	(Finite) statistical size effects on compressive strength. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6231-6236.	3.3	47
17	Damage-Cluster Distributions and Size Effect on Strength in Compressive Failure. Physical Review Letters, 2012, 108, 225502.	2.9	38
18	Understanding mudslides through micro-seismic monitoring: the Super-Sauze (South-East French) Tj ETQq0 0 () rgBT /Ove	erlo <u>ck</u> 10 Tf 50

DAVID AMITRANO

#	Article	IF	CITATIONS
19	Towards a standard typology of endogenous landslide seismic sources. Earth Surface Dynamics, 2018, 6, 1059-1088.	1.0	35
20	Use of the simultaneous seismic, GPS and meteorological monitoring for the characterization of a large unstable mountain slope in the southern French Alps. Geophysical Journal International, 2010, 182, 1395-1410.	1.0	34
21	Compressive Failure as a Critical Transition: Experimental Evidence and Mapping onto the Universality Class of Depinning. Physical Review Letters, 2019, 122, 015502.	2.9	32
22	Long-term dynamics of rockslides and damage propagation inferred from mechanical modeling. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2292-2307.	1.0	30
23	Mechanical behavior of western alpine structures inferred from statistical analysis of seismicity. Geophysical Research Letters, 2002, 29, 65-1-65-4.	1.5	29
24	Revisiting statistical size effects on compressive failure of heterogeneous materials, with a special focus on concrete. Journal of the Mechanics and Physics of Solids, 2018, 121, 47-70.	2.3	29
25	Seismic and mechanical studies of the artificially triggered rockfall at Mount Néron (French Alps,) Tj ETQq1 1 0.	784314 r 1.5	gBT/Overloc 22
26	Revisiting the concept of characteristic compressive strength of concrete. Construction and Building Materials, 2020, 263, 120126.	3.2	22
27	Structural evolution of the Nojima fault (Awaji Island, Japan) revisited from the GSJ drill hole at Hirabayashi. Earth, Planets and Space, 2004, 56, 1233-1240.	0.9	20
28	Crossover from quasi-static to dense flow regime in compressed frictional granular media. Europhysics Letters, 2013, 104, 46001.	0.7	20
29	Seismic Analysis of the Detachment and Impact Phases of a Rockfall and Application for Estimating Rockfall Volume and Freeâ€Fall Height. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2602-2622.	1.0	20
30	Evidence of dilatant and non-dilatant damage processes in oolitic iron ore: <i>P</i> -wave velocity and acoustic emission analyses. Geophysical Journal International, 2009, 177, 1343-1356.	1.0	17
31	Analysis of image vs. position, scale and direction reveals pattern texture anisotropy. Frontiers in Physics, 2015, 2, .	1.0	13
32	Fiber bundle model under fluid pressure. Physical Review E, 2016, 93, 033003.	0.8	12
33	From plastic flow to brittle fracture: Role of microscopic friction in amorphous solids. Physical Review E, 2019, 100, 012908.	0.8	12
34	Damage and Strain Localization Around a Pressurized Shallowâ€Level Magma Reservoir. Journal of Geophysical Research: Solid Earth, 2019, 124, 1443-1458.	1.4	10
35	Émergence de la complexité dans un modÓle simple de comportement mécanique des roches. Comptes Rendus - Geoscience, 2004, 336, 505-512.	0.4	7
36	Scaling properties of fault rocks. Journal of Structural Geology, 2012, 45, 125-136.	1.0	7

DAVID AMITRANO

#	Article	IF	CITATIONS
37	The potential impact of size effects on compressive strength for the estimation of the Young's modulus of concrete. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
38	Transient Brittle Creep Mechanism Explains Early Postseismic Phase of the 2011 Tohokuâ€Oki Megathrust Earthquake: Observations by Highâ€Rate GPS Solutions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
39	Introduction to the thematic volume: issues in landslide process monitoring and understanding. Bulletin - Societie Geologique De France, 2007, 178, 63-64.	0.9	5
40	Velocity survey of an excavation damaged zone: influence of excavation and reloading. Geological Society Special Publication, 2007, 284, 41-55.	0.8	5
41	Perspective on completing natural inflation. Frontiers in Physics, 2015, 2, .	1.0	3
42	Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset. Data in Brief, 2020, 33, 106477.	0.5	2
43	Acoustic emission of jointed and intact granite during triaxial compression test. , 2018, , 375-380.		2
44	Damage-based long term modelling of a large alpine rock slope. , 2018, , 1723-1730.		2
45	Statistical Size Effects on Compressive Strength and Mechanical Behavior of Concrete. Key Engineering Materials, 0, 754, 317-320.	0.4	1
46	Damage-based long term modelling of a large alpine rock slope. , 2016, , 1723-1730.		1