
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033754/publications.pdf Version: 2024-02-01



TIANNAN CUO

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Quantitative proteomic landscapes of primary and recurrent glioblastoma reveal a protumorigeneic role for FBXO2-dependent glioma-microenvironment interactions. Neuro-Oncology, 2023, 25, 290-302.      | 0.6 | 8         |
| 2  | PROTREC: A probability-based approach for recovering missing proteins based on biological networks.<br>Journal of Proteomics, 2022, 250, 104392.                                                        | 1.2 | 8         |
| 3  | Potential Use of Serum Proteomics for Monitoring COVID-19 Progression to Complement RT-PCR<br>Detection. Journal of Proteome Research, 2022, 21, 90-100.                                                | 1.8 | 19        |
| 4  | A prostate cancer tissue specific spectral library for targeted proteomic analysis. Proteomics, 2022, 22, e2100147.                                                                                     | 1.3 | 10        |
| 5  | Proteomics profiling of colorectal cancer progression identifies PLOD2 as a potential therapeutic target. Cancer Communications, 2022, 42, 164-169.                                                     | 3.7 | 7         |
| 6  | Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19.<br>Cell Reports, 2022, 38, 110271.                                                                    | 2.9 | 66        |
| 7  | sRAGE alleviates SARS-CoV-2-induced pneumonia in hamster. Signal Transduction and Targeted Therapy, 2022, 7, 36.                                                                                        | 7.1 | 1         |
| 8  | DIA-Based Proteomics Identifies IDH2 as a Targetable Regulator of Acquired Drug Resistance in Chronic<br>Myeloid Leukemia. Molecular and Cellular Proteomics, 2022, 21, 100187.                         | 2.5 | 4         |
| 9  | Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF. Data in Brief, 2022, 41, 107919.                                                                                     | 0.5 | 5         |
| 10 | Circulating Proteome and Progression of Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1616-1625.                                                                        | 1.8 | 4         |
| 11 | Multi-omics in COVID-19: Seeing the unseen but overlooked in the clinic. Cell Reports Medicine, 2022, 3, 100580.                                                                                        | 3.3 | 9         |
| 12 | RAB2A promotes cervical cancer progression as revealed by comprehensive analysis of HPV integration and proteome in longitudinal cervical samples. Clinical and Translational Medicine, 2022, 12, e767. | 1.7 | 2         |
| 13 | Stratification of follicular thyroid tumours using dataâ€independent acquisition proteomics and a comprehensive thyroid tissue spectral library. Molecular Oncology, 2022, 16, 1611-1624.               | 2.1 | 14        |
| 14 | Understudied proteins: opportunities and challenges for functional proteomics. Nature Methods, 2022, 19, 774-779.                                                                                       | 9.0 | 83        |
| 15 | An open invitation to the Understudied Proteins Initiative. Nature Biotechnology, 2022, 40, 815-817.                                                                                                    | 9.4 | 25        |
| 16 | Proteomic characterization of Omicron SARS-CoV-2 host response. Cell Discovery, 2022, 8, 46.                                                                                                            | 3.1 | 8         |
| 17 | Molecular Subgroups of Intrahepatic Cholangiocarcinoma Discovered by Single-Cell RNA<br>Sequencing–Assisted Multiomics Analysis. Cancer Immunology Research, 2022, 10, 811-828.                         | 1.6 | 21        |
| 18 | An in-library ligation strategy and its application in CRISPR/Cas9 screening of high-order gRNA combinations. Nucleic Acids Research, 2022, 50, 6575-6586.                                              | 6.5 | 1         |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection Pulsed Gas-Phase Fractionation. Journal of Proteome Research, 2021, 20, 279-288.                                        | 1.8  | 37        |
| 20 | BatchServer: A Web Server for Batch Effect Evaluation, Visualization, and Correction. Journal of Proteome Research, 2021, 20, 1079-1086.                                                               | 1.8  | 10        |
| 21 | Eleven routine clinical features predict COVID-19 severity uncovered by machine learning of longitudinal measurements. Computational and Structural Biotechnology Journal, 2021, 19, 3640-3649.        | 1.9  | 28        |
| 22 | Multi-organ proteomic landscape of COVID-19 autopsies. Cell, 2021, 184, 775-791.e14.                                                                                                                   | 13.5 | 272       |
| 23 | Immunometabolism the CyTOF way. Immunity, 2021, 54, 610-613.                                                                                                                                           | 6.6  | 6         |
| 24 | Gut microbiota, inflammation, and molecular signatures of host response to infection. Journal of<br>Genetics and Genomics, 2021, 48, 792-802.                                                          | 1.7  | 49        |
| 25 | Proteomic and metabolomic investigation of serum lactate dehydrogenase elevation in COVIDâ€19 patients. Proteomics, 2021, 21, e2100002.                                                                | 1.3  | 18        |
| 26 | On the feasibility of deep learning applications using raw mass spectrometry data. Bioinformatics, 2021, 37, i245-i253.                                                                                | 1.8  | 10        |
| 27 | Phenotypic characterization of two novel cell line models of castrationâ€resistant prostate cancer.<br>Prostate, 2021, 81, 1159-1171.                                                                  | 1.2  | 9         |
| 28 | The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis. Cancer Letters, 2021, 513, 1-13.                                            | 3.2  | 18        |
| 29 | SnapShot: Clinical proteomics. Cell, 2021, 184, 4840-4840.e1.                                                                                                                                          | 13.5 | 29        |
| 30 | High-throughput proteomics and AI for cancer biomarker discovery. Advanced Drug Delivery Reviews, 2021, 176, 113844.                                                                                   | 6.6  | 54        |
| 31 | ProteomeExpert: a Docker image-based web server for exploring, modeling, visualizing and mining quantitative proteomic datasets. Bioinformatics, 2021, 37, 273-275.                                    | 1.8  | 12        |
| 32 | Computational Optimization of Spectral Library Size Improves DIA-MS Proteome Coverage and Applications to 15 Tumors. Journal of Proteome Research, 2021, 20, 5392-5401.                                | 1.8  | 21        |
| 33 | Novel deep learning radiomics model for preoperative evaluation of hepatocellular carcinoma<br>differentiation based on computed tomography data. Clinical and Translational Medicine, 2021, 11, e570. | 1.7  | 11        |
| 34 | DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery. Genomics,<br>Proteomics and Bioinformatics, 2020, 18, 104-119.                                                 | 3.0  | 51        |
| 35 | Generating Proteomic Big Data for Precision Medicine. Proteomics, 2020, 20, 1900358.                                                                                                                   | 1.3  | 7         |
| 36 | Phenotype Classification using Proteome Data in a Data-Independent Acquisition Tensor Format.<br>Journal of the American Society for Mass Spectrometry, 2020, 31, 2296-2304.                           | 1.2  | 7         |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Convergent network effects along the axis of gene expression during prostate cancer progression.<br>Genome Biology, 2020, 21, 302.                                                                                         | 3.8  | 17        |
| 38 | Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell, 2020, 182, 59-72.e15.                                                                                                                           | 13.5 | 1,137     |
| 39 | Accelerated Lysis and Proteolytic Digestion of Biopsy-Level Fresh-Frozen and FFPE Tissue Samples Using<br>Pressure Cycling Technology. Journal of Proteome Research, 2020, 19, 1982-1990.                                  | 1.8  | 47        |
| 40 | Accelerated Protein Biomarker Discovery from FFPE Tissue Samples Using Single-Shot, Short Gradient<br>Microflow SWATH MS. Journal of Proteome Research, 2020, 19, 2732-2741.                                               | 1.8  | 27        |
| 41 | Dataâ€Independent Acquisition Mass Spectrometryâ€Based Proteomics and Software Tools: A Climpse in 2020. Proteomics, 2020, 20, e1900276.                                                                                   | 1.3  | 222       |
| 42 | A circulating extracellular vesiclesâ€based novel screening tool for colorectal cancer revealed by<br>shotgun and dataâ€independent acquisition mass spectrometry. Journal of Extracellular Vesicles, 2020,<br>9, 1750202. | 5.5  | 70        |
| 43 | IDDF2020-ABS-0073â€Proteomics reveals that rectal cancer patients with neoadjuvant radiochemotherapy reach pCR through immune activation. , 2020, , .                                                                      |      | 0         |
| 44 | Proteomic investigation of intra-tumor heterogeneity using network-based contextualization — A case study on prostate cancer. Journal of Proteomics, 2019, 206, 103446.                                                    | 1.2  | 3         |
| 45 | Highâ€throughput proteomic analysis of <scp>FFPE</scp> tissue samples facilitates tumor<br>stratification. Molecular Oncology, 2019, 13, 2305-2328.                                                                        | 2.1  | 100       |
| 46 | Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nature Communications, 2019, 10, 2524.                                                                      | 5.8  | 35        |
| 47 | In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics, 2019, 9, 2475-2488.                                                                         | 4.6  | 76        |
| 48 | Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines. IScience, 2019, 21, 664-680.                                                                                                                              | 1.9  | 52        |
| 49 | Arabidopsis proteome and the mass spectral assay library. Scientific Data, 2019, 6, 278.                                                                                                                                   | 2.4  | 39        |
| 50 | Identification of Protein Abundance Changes in Hepatocellular Carcinoma Tissues Using PCT–SWATH.<br>Proteomics - Clinical Applications, 2019, 13, e1700179.                                                                | 0.8  | 32        |
| 51 | Towards a one-stop solution for large-scale proteomics data analysis. Science China Life Sciences, 2018, 61, 351-354.                                                                                                      | 2.3  | 2         |
| 52 | Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life<br>Science Alliance, 2018, 1, e201800042.                                                                              | 1.3  | 51        |
| 53 | Application of Nanosecond Laser Photolysis Protein Footprinting to Study EGFR Activation by EGF in<br>Cells. Journal of Proteome Research, 2017, 16, 2282-2293.                                                            | 1.8  | 21        |
| 54 | A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients. Scientific Data, 2017, 4, 170014.                                                                                  | 2.4  | 21        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Phosphatase POPX2 Exhibits Dual Regulatory Functions in Cancer Metastasis. Journal of Proteome<br>Research, 2017, 16, 698-711.                                                                            | 1.8  | 13        |
| 56 | High-Throughput Proteomic Analysis of Fresh-Frozen Biopsy Tissue Samples Using Pressure Cycling<br>Technology Coupled with SWATH Mass Spectrometry. Methods in Molecular Biology, 2017, 1788,<br>279-287. | 0.4  | 19        |
| 57 | Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity. Scientific Reports, 2016, 6, 24146.                                                           | 1.6  | 28        |
| 58 | TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell, 2016, 29, 846-858.                                                                                                      | 7.7  | 228       |
| 59 | Reproducible Tissue Homogenization and Protein Extraction for Quantitative Proteomics Using<br>MicroPestle-Assisted Pressure-Cycling Technology. Journal of Proteome Research, 2016, 15, 1821-1829.       | 1.8  | 41        |
| 60 | Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT-SWATH mass spectrometry. Proteomics, 2015, 15, 3711-3721.                                       | 1.3  | 44        |
| 61 | Quantitative proteomics signature profiling based on network contextualization. Biology Direct, 2015, 10, 71.                                                                                             | 1.9  | 34        |
| 62 | Mass spectrometry-based proteomic quest for diabetes biomarkers. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2015, 1854, 519-527.                                                         | 1.1  | 42        |
| 63 | The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nature Immunology, 2015, 16, 505-516.                            | 7.0  | 144       |
| 64 | Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nature Medicine, 2015, 21, 407-413.                                                       | 15.2 | 358       |
| 65 | Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in<br>Response to Hyperosmotic Stress. Journal of Proteome Research, 2015, 14, 3982-3995.                     | 1.8  | 25        |
| 66 | LEO1 Is Regulated by PRL-3 and Mediates Its Oncogenic Properties in Acute Myelogenous Leukemia.<br>Cancer Research, 2014, 74, 3043-3053.                                                                  | 0.4  | 29        |
| 67 | Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils. Proteomics, 2014, 14, 1688-1697.                                            | 1.3  | 22        |
| 68 | A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data, 2014, 1, 140031.                                                                                                   | 2.4  | 370       |
| 69 | Integrative Transcriptome and Proteome Study to Identify the Signaling Network Regulated by POPX2<br>Phosphatase. Journal of Proteome Research, 2013, 12, 2525-2536.                                      | 1.8  | 18        |
| 70 | Multidimensional Identification of Tissue Biomarkers of Gastric Cancer. Journal of Proteome<br>Research, 2012, 11, 3405-3413.                                                                             | 1.8  | 14        |
| 71 | Abstract 2460: Extracellular matrix protein expression is associated with chemotherapy resistance in breast cancer. , 2012, , .                                                                           |      | 0         |
| 72 | Global molecular dysfunctions in gastric cancer revealed by an integrated analysis of the phosphoproteome and transcriptome. Cellular and Molecular Life Sciences, 2011, 68, 1983-2002.                   | 2.4  | 32        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Investigation of POPX2 phosphatase functions by comparative phosphoproteomic analysis. Proteomics, 2011, 11, 2891-2900.                                                                                                       | 1.3 | 20        |
| 74 | Elucidating Structural Dynamics of Integral Membrane Proteins on Native Cell Surface by Hydroxyl<br>Radical Footprinting and Nano LC-MS/MS. Methods in Molecular Biology, 2011, 790, 287-303.                                 | 0.4 | 5         |
| 75 | Simultaneous Analysis of Proteome, Phospho- and Glycoproteome of Rat Kidney Tissue with<br>Electrostatic Repulsion Hydrophilic Interaction Chromatography. PLoS ONE, 2011, 6, e16884.                                         | 1.1 | 54        |
| 76 | Quantitative Proteomics Discloses MET Expression in Mitochondria as a Direct Target of MET Kinase<br>Inhibitor in Cancer Cells. Molecular and Cellular Proteomics, 2010, 9, 2629-2641.                                        | 2.5 | 22        |
| 77 | Simultaneous Characterization of Glyco- and Phosphoproteomes of Mouse Brain Membrane Proteome<br>with Electrostatic Repulsion Hydrophilic Interaction Chromatography. Molecular and Cellular<br>Proteomics, 2010, 9, 635-647. | 2.5 | 90        |
| 78 | Novel Application of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) in<br>Shotgun Proteomics: Comprehensive Profiling of Rat Kidney Proteome. Journal of Proteome Research,<br>2010, 9, 3520-3526.    | 1.8 | 84        |
| 79 | Elucidating in Vivo Structural Dynamics in Integral Membrane Protein by Hydroxyl Radical<br>Footprinting. Molecular and Cellular Proteomics, 2009, 8, 1999-2010.                                                              | 2.5 | 56        |
| 80 | Elucidating the Structure of Cyclotides by Partial Acid Hydrolysis and LCâ^'MS/MS Analysis. Analytical Chemistry, 2009, 81, 1079-1088.                                                                                        | 3.2 | 33        |
| 81 | One-Step Procedure for Peptide Extraction from In-Gel Digestion Sample for Mass Spectrometric<br>Analysis. Analytical Chemistry, 2008, 80, 9797-9805.                                                                         | 3.2 | 19        |
| 82 | A Comparative Study of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC)<br>versus SCX-IMAC-Based Methods for Phosphopeptide Isolation/Enrichment. Journal of Proteome<br>Research, 2008, 7, 4869-4877.  | 1.8 | 88        |
| 83 | Hybridization of Pulsed-Q Dissociation and Collision-Activated Dissociation in Linear Ion Trap Mass<br>Spectrometer for iTRAQ Quantitation. Journal of Proteome Research, 2008, 7, 4831-4840.                                 | 1.8 | 63        |
| 84 | Expression and fuactional role of HERG1, K+ channels in leukemic cells and leukemic stem cells.<br>Journal of Huazhong University of Science and Technology [Medical Sciences], 2007, 27, 257-260.                            | 1.0 | 8         |
| 85 | Optimization of Microflow LC Coupled with Scanning SWATH and Its Application in Hepatocellular<br>Carcinoma Tissues. Journal of Proteome Research, 0, , .                                                                     | 1.8 | 5         |
| 86 | Proteotypic Differences of Follicular-Patterned Thyroid Neoplasms. Frontiers in Endocrinology, 0, 13,                                                                                                                         | 1.5 | 3         |