
Haoquan Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
2	Two-Dimensional Metal–Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction: Tailoring the Activity through Exposed Crystal Facets. CCS Chemistry, 2022, 4, 1633-1642.	4.6	13
3	Frontispiece: The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	0
4	A heteroepitaxially grown two-dimensional metal–organic framework and its derivative for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 10408-10416.	5.2	13
5	Fe Singleâ€atom Sites in Twoâ€Dimensional Nitrogenâ€doped Porous Carbon for Electrocatalytic Oxygen Reduction. ChemCatChem, 2022, 14, .	1.8	3
6	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	7.1	12
7	Riveting the atomically distributed lithiophilic centers in the CNT-reinforced interfacial layer: an ultrathin, light-weight deposition substrate toward superior Li utilization. Journal of Materials Chemistry A, 2021, 9, 21281-21290.	5.2	5
8	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
9	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	7.1	77
10	Substituent position effect of Co porphyrin on oxygen electrocatalysis. Chinese Chemical Letters, 2021, 32, 2841-2845.	4.8	33
11	Metal–Organicâ€Frameworkâ€6upported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 8472-8476.	7.2	153
12	Metal–Organicâ€Frameworkâ€Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 8553-8557.	1.6	20
13	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	7.2	29
14	Highly Curved Nanostructureâ€Coated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12759-12764.	7.2	120
15	Highly Curved Nanostructureâ€Coated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie, 2021, 133, 12869-12874.	1.6	19
16	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	1.6	6
17	Anion engineering of hierarchical Co-A (AÂ=ÂO, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3241-3244.	4.8	16
18	O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chinese Journal of Catalysis, 2021, 42, 1253-1268.	6.9	86

HAOQUAN ZHENG

#	Article	IF	CITATIONS
19	Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coordination Chemistry Reviews, 2021, 442, 213996.	9.5	57
20	On the completeness of three-dimensional electron diffraction data for structural analysis of metal–organic frameworks. Faraday Discussions, 2021, 231, 66-80.	1.6	14
21	Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications, 2021, 57, 8190-8193.	2.2	12
22	Amino Acid-Functionalized Two-Dimensional Hollow Cobalt Sulfide Nanoleaves for the Highly Selective Enrichment of N-Linked Glycopeptides. Analytical Chemistry, 2020, 92, 2151-2158.	3.2	37
23	A metal–organic framework based inner ear delivery system for the treatment of noise-induced hearing loss. Nanoscale, 2020, 12, 16359-16365.	2.8	20
24	Synthesis and Crystal-Phase Engineering of Mesoporous Palladium–Boron Alloy Nanoparticles. ACS Central Science, 2020, 6, 2347-2353.	5.3	36
25	The Immobilization of Pd(II) on Porous Organic Polymers for Semihydrogenation of Terminal Alkynes. ACS Applied Materials & Interfaces, 2020, 12, 51428-51436.	4.0	12
26	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
27	Recent Progress on Defectâ€rich Transition Metal Oxides and Their Energyâ€Related Applications. Chemistry - an Asian Journal, 2020, 15, 3717-3736.	1.7	38
28	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
29	A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.	5.2	95
30	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
31	Ultraâ€ŧhin Coâ^'Fe Layered Double Hydroxide Hollow Nanocubes for Efficient Electrocatalytic Water Oxidation. ChemPhysChem, 2019, 20, 2964-2967.	1.0	25
32	2D Metal–Organic Framework Derived CuCo Alloy Nanoparticles Encapsulated by Nitrogenâ€Doped Carbonaceous Nanoleaves for Efficient Bifunctional Oxygen Electrocatalyst and Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 12780-12788.	1.7	38
33	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
34	Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis, 2019, 9, 4320-4344.	5.5	138
35	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	2.2	39
36	Hierarchical Znâ€Doped CoO Nanoflowers for Electrocatalytic Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 1480-1486.	1.8	24

HAOQUAN ZHENG

#	Article	IF	CITATIONS
37	Dual Tuning of Ultrathin α-Co(OH) ₂ Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3527-3535.	3.2	56
38	Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochimica Acta, 2018, 271, 526-536.	2.6	42
39	Hollow Mesoporous Silica@Metal–Organic Framework and Applications for pHâ€Responsive Drug Delivery. ChemMedChem, 2018, 13, 400-405.	1.6	57
40	Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. Chemical Science, 2018, 9, 398-404.	3.7	85
41	Ultrathin Pt–Ag Alloy Nanotubes with Regular Nanopores for Enhanced Electrocatalytic Activity. Chemistry of Materials, 2018, 30, 7744-7751.	3.2	35
42	Hollow Mesoporous Silica@Zeolitic Imidazolate Framework Capsules and Their Applications for Gentamicin Delivery. Neural Plasticity, 2018, 2018, 1-9.	1.0	10
43	A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Transactions, 2018, 47, 10223-10228.	1.6	91
44	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie, 2018, 130, 11852-11856.	1.6	42
45	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie - International Edition, 2018, 57, 11678-11682.	7.2	133
46	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	3.7	56
47	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	1.6	19
48	Cobalt–Nitrogenâ€Ðoped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	7.2	112
49	PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chemical Communications, 2018, 54, 7519-7522.	2.2	160
50	Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction. ACS Catalysis, 2017, 7, 1601-1605.	5.5	64
51	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 1746-1758.	4.0	69
52	Electrocatalysis: Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	0
53	A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules. Inorganic Chemistry, 2017, 56, 9139-9146.	1.9	119
54	Pd–Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine. RSC Advances, 2017, 7, 32310-32315.	1.7	18

HAOQUAN ZHENG

#	Article	IF	CITATIONS
55	Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1700286.	11.1	227
56	Application of Pd Nanoparticles Supported on Mesoporous Hollow Silica Nanospheres for the Efficient and Selective Semihydrogenation of Alkynes. ChemCatChem, 2016, 8, 773-778.	1.8	30
57	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6447-6455.	5.2	39
58	Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 2016, 16, 3675-3681.	4.5	388
59	Nanosized inorganic porous materials: fabrication, modification and application. Journal of Materials Chemistry A, 2016, 4, 16756-16770.	5.2	43
60	Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 2016, 8, 15689-15695.	2.8	52
61	Nanostructure and pore size control of template-free synthesised mesoporous magnesium carbonate. RSC Advances, 2016, 6, 74241-74249.	1.7	30
62	Explaining the Size Dependence in Platinumâ€Nanoparticleâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie, 2016, 128, 15885-15890.	1.6	44
63	Explaining the Size Dependence in Platinumâ€Nanoparticleâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2016, 55, 15656-15661.	7.2	225
64	A facile synthesis of Fe ₃ C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale, 2016, 8, 5441-5445.	2.8	53
65	One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. Journal of the American Chemical Society, 2016, 138, 962-968.	6.6	1,073
66	Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Transactions, 2015, 44, 20186-20192.	1.6	27
67	A Crystalline Mesoporous Germanate with 48â€Ring Channels for CO ₂ Separation. Angewandte Chemie - International Edition, 2015, 54, 7290-7294.	7.2	26
68	Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Materials, 2014, 2, 113316.	2.2	20
69	Coordination bonding based pH-responsive drug delivery systems. Coordination Chemistry Reviews, 2013, 257, 1933-1944.	9.5	123
70	Coordination Polymer Coated Mesoporous Silica Nanoparticles for pHâ€Responsive Drug Release. Advanced Materials, 2012, 24, 6433-6437.	11.1	216
71	Coordination Bonding-Based Mesoporous Silica for pH-Responsive Anticancer Drug Doxorubicin Delivery. Journal of Physical Chemistry C, 2011, 115, 16803-16813.	1.5	75