
Jamie Paik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033499/publications.pdf Version: 2024-02-01

IAMIE DAIK

#	Article	IF	CITATIONS
1	New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Science Robotics, 2017, 2, .	9.9	253
2	Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method. Advanced Engineering Materials, 2016, 18, 978-988.	1.6	192
3	Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement. Soft Robotics, 2016, 3, 109-119.	4.6	170
4	Designing minimal and scalable insect-inspired multi-locomotion millirobots. Nature, 2019, 571, 381-386.	13.7	154
5	Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices. Scientific Reports, 2016, 6, 34224.	1.6	146
6	Mori: A Modular Origami Robot. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2153-2164.	3.7	113
7	Soft Pneumatic Actuator Fascicles for High Force and Reliability. Soft Robotics, 2017, 4, 23-32.	4.6	113
8	Closed-Loop Haptic Feedback Control Using a Self-Sensing Soft Pneumatic Actuator Skin. Soft Robotics, 2020, 7, 22-29.	4.6	98
9	Grasp Mode and Compliance Control of an Underactuated Origami Gripper Using Adjustable Stiffness Joints. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2165-2173.	3.7	93
10	Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis. IEEE Transactions on Robotics, 2017, 33, 765-777.	7.3	91
11	Characterization of silicone rubber based soft pneumatic actuators. , 2013, , .		85
12	Robogami: A Fully Integrated Low-Profile Robotic Origami. Journal of Mechanisms and Robotics, 2015, 7, .	1.5	81
13	JammJoint: A Variable Stiffness Device Based on Granular Jamming for Wearable Joint Support. IEEE Robotics and Automation Letters, 2017, 2, 849-855.	3.3	80
14	Modular Reconfigurable Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 63-88.	7.5	76
15	Soft Pneumatic Actuator Skin with Piezoelectric Sensors for Vibrotactile Feedback. Frontiers in Robotics and Al, 2016, 2, .	2.0	69
16	Design Methodology for Constructing Multimaterial Origami Robots and Machines. IEEE Transactions on Robotics, 2018, 34, 151-165.	7.3	69
17	Soft pneumatic gelatin actuator for edible robotics. , 2017, , .		66
18	A novel low-profile shape memory alloy torsional actuator. Smart Materials and Structures, 2010, 19, 125014.	1.8	65

#	Article	IF	CITATIONS
19	A bidirectional shape memory alloy folding actuator. Smart Materials and Structures, 2012, 21, 065013.	1.8	64
20	Variable stiffness fabrics with embedded shape memory materials for wearable applications. , 2014, , .		62
21	An Origami-Inspired Reconfigurable Suction Gripper for Picking Objects With Variable Shape and Size. IEEE Robotics and Automation Letters, 2018, 3, 2894-2901.	3.3	60
22	An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes. Smart Materials and Structures, 2017, 26, 055035.	1.8	56
23	A portable three-degrees-of-freedom force feedback origami robot for human–robot interactions. Nature Machine Intelligence, 2019, 1, 584-593.	8.3	56
24	How can human motion prediction increase transparency?. , 2008, , .		48
25	Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF Actuation. , 2015, , .		47
26	A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications. IEEE Robotics and Automation Letters, 2020, 5, 4094-4101.	3.3	45
27	Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection. Smart Materials and Structures, 2015, 24, 075030.	1.8	37
28	The design and control of the multi-modal locomotion origami robot, Tribot. , 2015, , .		36
29	Development of an Anthropomorphic Robotic Arm and Hand for Interactive Humanoids. Journal of Bionic Engineering, 2012, 9, 133-142.	2.7	35
30	Modeling vacuum bellows soft pneumatic actuators with optimal mechanical performance. , 2018, , .		35
31	Sensor and actuator integrated low-profile robotic origami. , 2013, , .		34
32	A Novel Torsional Shape Memory Alloy Actuator: Modeling, Characterization, and Control. IEEE Robotics and Automation Magazine, 2016, 23, 65-74.	2.2	34
33	Soft pneumatic actuator-driven origami-inspired modular robotic "pneumagami― International Journal of Robotics Research, 2021, 40, 72-85.	5.8	34
34	Soft piezoresistive sensor model and characterization with varying design parameters. Sensors and Actuators A: Physical, 2015, 233, 158-168.	2.0	32
35	Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance. Scientific Reports, 2017, 7, 14391.	1.6	32
36	Pneumatic Supply System Parameter Optimization for Soft Actuators. Soft Robotics, 2021, 8, 152-163.	4.6	31

#	Article	IF	CITATIONS
37	Toward the Development of a Hand-Held Surgical Robot for Laparoscopy. IEEE/ASME Transactions on Mechatronics, 2010, , .	3.7	30
38	A reconfiguration strategy for modular robots using origami folding. International Journal of Robotics Research, 2019, 38, 73-89.	5.8	29
39	Clawed Miniature Inchworm Robot Driven by Electromagnetic Oscillatory Actuator. Journal of Bionic Engineering, 2015, 12, 519-526.	2.7	26
40	Minimally Actuated Transformation of Origami Machines. IEEE Robotics and Automation Letters, 2018, 3, 1426-1433.	3.3	25
41	A Low Profile Electromagnetic Actuator Design and Model for an Origami Parallel Platform. Journal of Mechanisms and Robotics, 2017, 9, .	1.5	24
42	Soft robot for gait rehabilitation of spinalized rodents. , 2013, , .		23
43	Soft robot design methodology for †push-button' manufacturing. Nature Reviews Materials, 2018, 3, 81-83.	23.3	23
44	Hinges for origami-inspired structures by multimaterial additive manufacturing. Materials and Design, 2020, 191, 108643.	3.3	23
45	Soft pneumatic actuators for legged locomotion. , 2014, , .		22
46	Single chamber multiple degree-of-freedom soft pneumatic actuator enabled by adjustable stiffness layers. Smart Materials and Structures, 2019, 28, 035012.	1.8	22
47	A Compact Modular Soft Surface With Reconfigurable Shape and Stiffness. IEEE/ASME Transactions on Mechatronics, 2019, 24, 16-24.	3.7	22
48	An under actuated robotic arm with adjustable stiffness shape memory polymer joints. , 2015, , .		21
49	RoboScallop: A Bivalve Inspired Swimming Robot. IEEE Robotics and Automation Letters, 2019, 4, 2078-2085.	3.3	21
50	CMOSâ€Inspired Complementary Fluidic Circuits for Soft Robots. Advanced Science, 2021, 8, e2100924.	5.6	21
51	A 4D printed active compliant hinge for potential space applications using shape memory alloys and polymers. Smart Materials and Structures, 2021, 30, 085004.	1.8	20
52	Will robots be bodies with brains or brains with bodies?. Science Robotics, 2017, 2, .	9.9	19
53	Multimodal pipe-climbing robot with origami clutches and soft modular legs. Bioinspiration and Biomimetics, 2020, 15, 026002.	1.5	19
54	Stretchable Kirigami Components for Composite Meso-Scale Robots. IEEE Robotics and Automation Letters, 2020, 5, 1883-1890.	3.3	19

#	Article	IF	CITATIONS
55	Soft Touch using Soft Pneumatic Actuator–Skin as a Wearable Haptic Feedback Device. Advanced Intelligent Systems, 2021, 3, 2000168.	3.3	19
56	Generalized modeling of origami folding joints. Extreme Mechanics Letters, 2021, 45, 101213.	2.0	19
57	Design and acceptability assessment of a new reversible orthosis. , 2008, , .		18
58	Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces. Extreme Mechanics Letters, 2019, 30, 100485.	2.0	17
59	The Design and Modeling of a Novel Resistive Stretch Sensor With Tunable Sensitivity. IEEE Sensors Journal, 2015, 15, 6390-6398.	2.4	16
60	Kirigami Design and Modeling for Strong, Lightweight Metamaterials. Advanced Functional Materials, 2022, 32, .	7.8	16
61	Tribot: A deployable, self-righting and multi-locomotive origami robot. , 2017, , .		15
62	The Effect of the Phase Angle between the Forewing and Hindwing on the Aerodynamic Performance of a Dragonfly-Type Ornithopter. Aerospace, 2016, 3, 4.	1.1	14
63	A reconfigurable interactive interface for controlling robotic origami in virtual environments. International Journal of Robotics Research, 2018, 37, 629-647.	5.8	14
64	Multi-DoF Force Characterization of Soft Actuators. IEEE Robotics and Automation Letters, 2019, 4, 3679-3686.	3.3	13
65	Hybrid Control Strategy for Force and Precise End Effector Positioning of a Twisted String Actuator. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2791-2802.	3.7	13
66	Flow Path Optimization for Soft Pneumatic Actuators: Towards Optimal Performance and Portability. IEEE Robotics and Automation Letters, 2021, 6, 7949-7956.	3.3	13
67	Rehabilitative Soft Exoskeleton for Rodents. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 107-118.	2.7	12
68	Soft Pneumatic Actuator skin with embedded sensors. , 2014, , .		11
69	Energy for Biomimetic Robots: Challenges and Solutions. Soft Robotics, 2014, 1, 106-109.	4.6	11
70	An any-resolution pressure localization scheme using a soft capacitive sensor skin. , 2018, , .		11
71	Haptigami: A Fingertip Haptic Interface With Vibrotactile and 3-DoF Cutaneous Force Feedback. IEEE Transactions on Haptics, 2022, 15, 131-141.	1.8	11
72	Closed-Loop Position Control of a Self-Sensing 3-DoF Origami Module With Pneumatic Actuators. IEEE Robotics and Automation Letters, 2021, 6, 8213-8220.	3.3	11

#	Article	IF	CITATIONS
73	Low-inertia vacuum-powered soft pneumatic actuator coil characterization and design methodology. , 2018, , .		10
74	Programmable Fluidic Networks Design for Robotic Origami Sequential Self-Folding. , 2019, , .		9
75	Robotic Hand-Held Surgical Device: Evaluation of End-Effector's Kinematics and Development of Proof-of-Concept Prototypes. Lecture Notes in Computer Science, 2010, 13, 432-439.	1.0	9
76	Automatic Couplings With Mechanical Overload Protection for Modular Robots. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1420-1426.	3.7	8
77	Optimal Distribution of Active Modules in Reconfiguration Planning of Modular Robots. Journal of Mechanisms and Robotics, 2019, 11, .	1.5	8
78	Practical control methods for vacuum driven soft actuator modules. , 2017, , .		7
79	Ori-Pixel, a Multi-DoFs Origami Pixel for Modular Reconfigurable Surfaces. IEEE Robotics and Automation Letters, 2020, 5, 6988-6995.	3.3	7
80	Compact Pneumatic Clutch With Integrated Stiffness Variation and Position Feedback. IEEE Robotics and Automation Letters, 2021, 6, 5697-5704.	3.3	7
81	Motion teaching method for complex robot links using motor current. International Journal of Control, Automation and Systems, 2010, 8, 1072-1081.	1.6	5
82	Algorithm for architectural origami. Nature, 2017, 541, 296-297.	13.7	4
83	Soft actuation and sensing towards robot-assisted facial rehabilitation. , 2017, , .		4
84	Bi-modal control of vacuum-powered soft pneumatic actuators with embedded liquid metal-based strain sensitive skin. , 2019, , .		4
85	Soft Components for Soft Robots. , 2015, , 272-281.		4
86	Variable Stiffness Folding Joints for Haptic Feedback. , 2021, , .		4
87	Stretchable circuits and sensors for robotic origami. , 2011, , .		3
88	Design of Low-Profile Compliant Transmission Mechanisms. , 2019, , .		3
89	Soft Bionic Sensors and Actuators. Advanced Intelligent Systems, 2021, 3, 2100003.	3.3	3
90	3D Printed Motor-Sensory Module Prototype for Facial Rehabilitation. Soft Robotics, 2022, 9, 354-363.	4.6	3

#	Article	IF	CITATIONS
91	Lattice-and-Plate Model: Mechanics Modeling of Physical Origami Robots. Soft Robotics, 2023, 10, 149-158.	4.6	3
92	Towards Peak Torque Minimization for Modular Self-Folding Robots. , 2018, , .		2
93	Guest Editorial Focused Section on Soft Actuators, Sensors, and Components (SASC). IEEE/ASME Transactions on Mechatronics, 2019, 24, 1-4.	3.7	2
94	An Actuation Fault Tolerance Approach to Reconfiguration Planning of Modular Self-folding Robots. , 2020, , .		2
95	3PAC: A Plug-and-Play System for Distributed Power Sharing and Communication in Modular Robots. IEEE/ASME Transactions on Mechatronics, 2022, 27, 858-867.	3.7	2
96	Flexure Variable Stiffness Actuators. Advanced Intelligent Systems, 2022, 4, .	3.3	2
97	Age-Dependent Asymmetry of Wrist Position Sense Is Not Influenced by Stochastic Tactile Stimulation. Frontiers in Human Neuroscience, 2020, 14, 65.	1.0	1
98	Hybrid Wireless–Local Communication via Information Propagation for Modular Robotic Synchronization Applications. Advanced Intelligent Systems, 0, , 2100226.	3.3	1
99	Robotic Muscular Assistance-As-Needed for Physical and Training/Rehabilitation Tasks: Design and Experimental Validation of a Closed-Loop Myoelectric Control in Grounded and Wearable	0.9	0

Applications. Springer Proceedings in Advanced Robotics, 2021, , 16-30.