José Luis RodrÃ-guez Marrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033130/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Synthesis Method of CO-Tolerant PtRuâ [~] MoO _{<i>x</i>} Nanoparticles: Structural Characteristics and Performance for Methanol Electrooxidation. Chemistry of Materials, 2008, 20, 4249-4259.	6.7	99
2	Electrochemical oxidation of CO and methanol on Pt–Ru catalysts supported on carbon nanofibers: the influence of synthesis method. Applied Catalysis B: Environmental, 2015, 165, 676-686.	20.2	80
3	Electrochemical surface reactions of intermediates formed in the oxidative ethanol adsorption on porous Pt and PtRu. Journal of Electroanalytical Chemistry, 1999, 471, 167-179.	3.8	79
4	Ammonia oxidation on electrodeposited Pt–Ir alloys. Journal of Solid State Electrochemistry, 2008, 12, 583-589.	2.5	73
5	Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation. Physical Chemistry Chemical Physics, 2010, 12, 10584.	2.8	70
6	Reaction Intermediates of Acetaldehyde Oxidation on Pt(111) and Pt(100). An in Situ FTIR Study. Langmuir, 2000, 16, 5479-5486.	3.5	64
7	CO tolerant catalysts for PEM fuel cells. Catalysis Today, 2006, 116, 415-421.	4.4	56
8	Comparative Study of Ethanol and Acetaldehyde Reactivities on Rhodium Electrodes in Acidic Media. Langmuir, 2002, 18, 763-772.	3.5	55
9	CO tolerant PtRu–MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. Journal of Power Sources, 2009, 186, 299-304.	7.8	55
10	New insights on the electrochemical oxidation of ethanol on carbon-supported Pt electrode by a novel electrochemical mass spectrometry configuration. Electrochemistry Communications, 2016, 63, 48-51.	4.7	52
11	Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up. Electrochimica Acta, 2016, 209, 121-131.	5.2	51
12	Electrocatalytic performance of different Mo-phases obtained during the preparation of innovative Pt-MoC catalysts for DMFC anode. International Journal of Hydrogen Energy, 2012, 37, 7171-7179.	7.1	46
13	Influence of the nature of the carbon support on the activity of Pt/C catalysts for ethanol and carbon monoxide oxidation. Journal of Catalysis, 2017, 348, 22-28.	6.2	45
14	Reactivity of acetaldehyde at platinum and rhodium in acidic media. A DEMS study. Electrochimica Acta, 2002, 47, 1441-1449.	5.2	40
15	Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (XÂ=ÂMo2C, MoO2, MoO) catalysts for the anode ofÂa DMFC: Influence of the Pt loading and Mo-phase. International Journal of Hydrogen Energy, 2013, 38, 7811-7821.	7.1	39
16	A comparative study on the adsorption of benzyl alcohol, toluene and benzene on platinum. Electrochimica Acta, 2000, 45, 4279-4289.	5.2	38
17	Ni@Pt nanodisks with low Pt content supported on reduced graphene oxide for methanol electrooxidation in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 19799-19809.	7.1	38
18	Carbon supported Ag and Ag–Co catalysts tolerant to methanol and ethanol for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 19789-19798.	7.1	38

#	Article	IF	CITATIONS
19	Carbon monoxide and methanol oxidations on Pt/X@MoO3/C (XÂ=ÂMo2C, MoO2, MoO) electrodes at different temperatures. Journal of Power Sources, 2013, 231, 163-172.	7.8	35
20	Electrocatalysis on metal carbide materials. International Journal of Hydrogen Energy, 2016, 41, 19664-19673.	7.1	33
21	Carbon monoxide and methanol oxidations on carbon nanofibers supported Pt–Ru electrodes at different temperatures. Electrochimica Acta, 2015, 186, 359-368.	5.2	31
22	Electrochemical performance of α-Mo2C as catalyst for the hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017, 793, 235-241.	3.8	26
23	Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. Langmuir, 2000, 16, 4695-4705.	3.5	25
24	On the design of Pt based catalysts. Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement. Journal of Power Sources, 2015, 282, 34-44.	7.8	24
25	Adsorption and oxidation pathways of thiourea at polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry, 2006, 588, 169-178.	3.8	23
26	Electrochemical reactions of benzoic acid on platinum and palladium studied by DEMS. Comparison with benzyl alcohol. Journal of Electroanalytical Chemistry, 2000, 494, 127-135.	3.8	22
27	Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation. Electrochimica Acta, 2010, 55, 7634-7642.	5.2	22
28	Reactions of Unsaturated Hydrocarbons at the Gold/Electrolyte Interface in Acid Solution. Journal of Physical Chemistry B, 1997, 101, 4565-4574.	2.6	21
29	DEMS study on the adsorption and reactivity of benzyl alcohol on palladium and platinum. Electrochimica Acta, 1998, 44, 1415-1422.	5.2	21
30	Spectroscopic Investigation of the Adsorbates of Benzyl Alcohol on Palladium. Langmuir, 2000, 16, 8456-8462.	3.5	19
31	Spectroscopic Investigation of the Adsorption and Oxidation of Thiourea on Polycrystalline Au and Au(111) in Acidic Media. Langmuir, 2004, 20, 8773-8780.	3.5	19
32	Elucidation of the reaction pathways of allyl alcohol at polycrystalline palladium electrodes. Journal of Electroanalytical Chemistry, 2001, 505, 62-71.	3.8	17
33	A spectroscopic proof of a surface equilibrium between on top and bridge bonded CO at Pt(110) in acid solution. Electrochemistry Communications, 2002, 4, 959-962.	4.7	16
34	FTIR studies of tyrosine oxidation at polycrystalline Pt and Pt(111) electrodes. Journal of Electroanalytical Chemistry, 2005, 585, 230-239.	3.8	16
35	Electrochemical Behavior of Benzaldehyde on Polycrystalline Platinum. An in Situ FTIR and DEMS Study. Langmuir, 2003, 19, 8899-8906.	3.5	15
36	DEMS study on the nature of acetaldehyde adsorbates at Pt and Pd by isotopic labelling. Journal of Solid State Electrochemistry, 2008, 12, 517-522.	2.5	13

#	Article	IF	CITATIONS
37	Macroporous carbon as support for PtRu catalysts. International Journal of Hydrogen Energy, 2014, 39, 3964-3969.	7.1	13
38	Adsorption, oxidation and reduction reactions of propargyl alcohol on palladium as studied by electrochemical mass spectrometry. Journal of Electroanalytical Chemistry, 1999, 472, 71-82.	3.8	12
39	The Influence of H[sub 2]O[sub 2] on the Adsorption and Oxidation of CO on Pt Electrodes in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2001, 148, A293.	2.9	12
40	Evidence of a Free Pt Surface under Electrodeposited Polyaniline (PANI) Films:Â CO Adsorption and Methanol Oxidation at PANI/Pt without Metal Particles. Langmuir, 2003, 19, 8137-8140.	3.5	12
41	FTIR Characterization of Surface Interactions of Cyanide and Copper Cyanide with a Platinum Electrode in Alkaline Solution. Journal of Physical Chemistry C, 2011, 115, 3671-3677.	3.1	12
42	Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells. Catalysts, 2013, 3, 811-838.	3.5	12
43	Effect of the Dendrimer Generation Used in the Synthesis of Pt-Ru Nanoparticles Supported on Carbon Nanofibers on the Catalytic Activity towards Methanol Oxidation. Energies, 2017, 10, 159.	3.1	12
44	On-line mass spectrometric studies on the interaction between organic adlayers on platinum. Part 1. Consecutive adsorption of formic acid and propargyl alcohol. Journal of Electroanalytical Chemistry, 1996, 404, 77-88.	3.8	11
45	Consecutive adsorption as studied by electrochemical mass spectrometry: Coadsorption, desorption and displacement reactions on platinum. Electrochimica Acta, 1998, 44, 1173-1179.	5.2	11
46	Probe beam deflection studies of nanostructured catalyst materials for fuel cells. Physical Chemistry Chemical Physics, 2008, 10, 6677.	2.8	11
47	A DEMS study of the electroreduction and oxidation of 3-buten-2-one and 2-butanone adsorbates on platinum in sulphuric solutions. Journal of Electroanalytical Chemistry, 1998, 454, 161-172.	3.8	10
48	Spectroscopic elucidation of reaction pathways of acetaldehyde on platinum and palladium in acidic media. Journal of Solid State Electrochemistry, 2014, 18, 1205-1213.	2.5	10
49	Spectroelectrochemical studies of poly(N-methylaniline) formation, redox behaviour and degradation. A comparison with polyaniline. Electrochimica Acta, 2014, 122, 39-49.	5.2	10
50	Methanol tolerant Pd-Based carbon supported catalysts as cathode materials for direct methanol fuel cells. International Journal of Hydrogen Energy, 2020, 45, 20673-20678.	7.1	10
51	Electrochemical and FTIR spectroscopic studies of tyrosine oxidation at polycrystalline platinum surfaces in alkaline solutions. Journal of Solid State Electrochemistry, 2008, 12, 523-528.	2.5	8
52	Synthetic Porous Carbon as Support of Platinum Nanoparticles for Fuel Cell Electrodes. Molecular Crystals and Liquid Crystals, 2010, 521, 229-236.	0.9	8
53	Revealing Structural Effects, Part II: The Influence of Molecular Structure on the Adsorption of Butanol Isomers on Platinum. Chemistry - A European Journal, 2005, 11, 3309-3317.	3.3	7
54	Revealing Structural Effects: Electrochemical Reactions of Butanols on Platinum. Chemistry - A European Journal, 2002, 8, 2134.	3.3	6

#	Article	IF	CITATIONS
55	Adsorption, oxidation and reduction of crotyl alcohol on platinum. Electrochimica Acta, 2006, 51, 5365-5375.	5.2	6
56	Heterogeneously assisted oxidation of adsorbates from carbonmonoxide, methanol and ethanol by hydrogen peroxide solutions on platinum electrodes in sulphuric acid. Journal of Applied Electrochemistry, 2006, 36, 1271-1279.	2.9	6
57	The influence of hydrogen peroxide on carbon monoxide electrooxidation at Pt/C and Pt:Ru/C electrodes. Journal of Solid State Electrochemistry, 2007, 11, 1521-1529.	2.5	6
58	Interaction between residues of different organic compounds on platinum: a mass spectrometric study. Journal of the Brazilian Chemical Society, 1997, 8, 107-112.	0.6	2
59	Ethanol Electrooxidation on Pt with Lanthanum Oxide as Cocatalyst in a DAFC. International Journal of Electrochemistry, 2012, 2012, 1-6.	2.4	1