
Wataru Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9032965/publications.pdf Version: 2024-02-01

WATAPH SHCIMOTO

#	Article	IF	CITATIONS
1	Enhancement in the Charge-Transfer Kinetics of Pseudocapacitive Iridium-Doped Layered Manganese Oxide. Inorganic Chemistry, 2022, 61, 4566-4571.	4.0	1
2	Zero-Overpotential Redox Reactions of Quinone-Based Molecules Confined in Carbon Micropores. ACS Applied Materials & Interfaces, 2022, 14, 31131-31139.	8.0	6
3	Effect of fluoroethylene carbonate and vinylene carbonate additives on full-cell optimization of Li-ion capacitors. Electrochemistry Communications, 2021, 122, 106905.	4.7	8
4	Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. Chemistry Letters, 2021, 50, 1304-1312.	1.3	7
5	Fabrication of Three-Dimensional Porous Materials with NiO Nanowalls for Electrocatalytic Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 8059-8065.	5.0	5
6	AlCl ₃ -graphite intercalation compounds as negative electrode materials for lithium-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 27459-27467.	10.3	6
7	Scalable Design of Twoâ€Dimensional Oxide Nanosheets for Construction of Ultrathin Multilayer Nanocapacitor. Small, 2020, 16, 2003485.	10.0	12
8	Direct preparation of core-shell platinum cathode in membrane electrode assembly catalyst layer for polymer electrolyte fuel cell. International Journal of Hydrogen Energy, 2020, 45, 14547-14551.	7.1	4
9	Synergetic Effect of RuO ₂ Nanosheets as a Redox Active Binder for Aqueous Electrochemical Capacitors: The Case of MnO ₂ . Electrochemistry, 2020, 88, 107-111.	1.4	0
10	Synthesis of Stacked Graphene-Sn Composite as a High-Performance Anode for Lithium-Ion Capacitors. Journal of the Electrochemical Society, 2020, 167, 040519.	2.9	14
11	Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor. Electrochemistry, 2020, 88, 74-78.	1.4	2
12	Improved Water-stable Protected Anodes with Low Resistance for Aqueous Energy Storage Devices. Electrochemistry, 2020, 88, 139-142.	1.4	1
13	Effect of Mass Balancing on Cell Performance and Electrochemical Investigation of Sn–Ni Alloy as Anode for Li-Ion Capacitors. Journal of the Electrochemical Society, 2020, 167, 130512.	2.9	3
14	Size Dependent Fast Li Ion Storage Based on Size Regulated TiO ₂ (B) Nanosheet Electrodes with Vertical, Horizontal and Random Alignment. Electrochemistry, 2020, 88, 305-309.	1.4	4
15	Electrodeposited SiË—OË—C as a High-Rate Performance Anode for LiË—ion Capacitor. Journal of the Electrochemical Society, 2019, 166, A2683-A2688.	2.9	2
16	Application of Sn-Ni Alloy as an Anode for Lithium-Ion Capacitors with Improved Volumetric Energy and Power Density. Journal of the Electrochemical Society, 2019, 166, A3615-A3619.	2.9	11
17	Two-Dimensional Effects on the Oxygen Reduction Reaction and Irreversible Surface Oxidation of Metallic Ru Nanosheets and Nanoparticles. ACS Applied Nano Materials, 2019, 2, 5743-5751.	5.0	16
18	Conductive Nanosized Magnéli-Phase Ti4O7 with a Core@Shell Structure. Inorganic Chemistry, 2019, 58, 7062-7068.	4.0	7

#	Article	IF	CITATIONS
19	Electrochemical and Spectroscopic Analysis of the Ionogel–Electrode Interface. ACS Applied Materials & Interfaces, 2019, 11, 12088-12097.	8.0	12
20	Vertically Aligned Reduced Graphite Oxide Nanosheet Film and its Application in a High-Speed Charge/Discharge Electrochemical Capacitor. ACS Applied Energy Materials, 2019, 2, 1033-1039.	5.1	18
21	Uncovering the real active sites of ruthenium oxide for the carbon monoxide electro-oxidation reaction on platinum: The catalyst acts as a co-catalyst. Journal of Electroanalytical Chemistry, 2018, 810, 109-118.	3.8	16
22	Conducting Nanosheets and Nanoparticles for Supercapacitors and Fuel Cell Electrocatalysts. Electrochemistry, 2018, 86, 281-290.	1.4	0
23	Oxidized Ti ₃ C ₂ MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 16446-16450.	2.8	60
24	High-performance hybrid supercapacitors enabled by protected lithium negative electrode and "water-in-salt―electrolyte. Journal of Power Sources, 2018, 396, 498-505.	7.8	43
25	Model electrode study of Ru@Pt core-shell nanosheet catalysts: Pure two-dimensional growth via surface limited redox replacement. Electrochimica Acta, 2018, 283, 826-833.	5.2	6
26	Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. Journal of the Electrochemical Society, 2017, 164, A1487-A1488.	2.9	198
27	Energy Storage Systems. Nanostructure Science and Technology, 2017, , 315-329.	0.1	3
28	Synthesis and Oxygen Electrocatalysis of Iridium Oxide Nanosheets. Electrocatalysis, 2017, 8, 144-150.	3.0	30
29	Ru-core@Pt-shell nanosheet for fuel cell electrocatalysts with high activity and durability. Journal of Catalysis, 2017, 345, 207-215.	6.2	31
30	Materials for Electrochemical Capacitors. , 2017, , 495-561.		25
31	4ÂV Aqueous hybrid supercapacitors based on dual electrolyte technologies. Current Opinion in Electrochemistry, 2017, 6, 127-130.	4.8	5
32	Lateral Size Effects of Two-dimensional IrO ₂ Nanosheets towards the Oxygen Evolution Reaction Activity. Electrochemistry, 2017, 85, 779-783.	1.4	10
33	High-temperature dielectric responses in all-nanosheet capacitors. Japanese Journal of Applied Physics, 2017, 56, 06GH09.	1.5	8
34	4.ãf‡ãf¥ã,¢ãf«é›»è§£è³ªã,'用ã,ãŸãfã,₿f−ãfªãffãf‰ã,¹ãf¼ãfʿãf¼ã,ãf£ãfʿã,∙ã,¿. Electrochemistry, 2017	, 8 5 ,4750-7	'5 ð .
35	Effect of charging methods on self-discharge and leakage current of supercapacitors. , 2016, , .		8

Room temperature performance of 4ÂV aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode. Journal of Power Sources, 2016, 326, 711-716.

7.8 16

#	Article	IF	CITATIONS
37	Insights into the enhanced tolerance to carbon monoxide on model tungsten trioxide-decorated polycrystalline platinum electrode. Electrochemistry Communications, 2016, 71, 69-72.	4.7	14
38	Hunting for Monolayer Oxide Nanosheets and Their Architectures. Scientific Reports, 2016, 6, 19402.	3.3	23
39	RuO2Nanosheet Modified Pt3Co/C Cathode: Mitigating Activity Loss at High Temperature and High Potential Conditions. Journal of the Electrochemical Society, 2016, 163, F11-F15.	2.9	5
40	Suppression of CO Adsorption on PtRu/C Catalysts Modified with Metallic Ruthenium Nanosheets. Journal of the Electrochemical Society, 2016, 163, F367-F371.	2.9	10
41	Correlation in structure and properties of highly-porous graphene monoliths studied with a thermal treatment method. Carbon, 2016, 96, 174-183.	10.3	34
42	Preparation of Mesoporous Bimetallic Au–Pt with a Phase‣egregated Heterostructure Using Mesoporous Silica. Chemistry - A European Journal, 2015, 21, 19142-19148.	3.3	4
43	Suppression of CO Adsorption on PtRu/C and Pt/C with RuO2 Nanosheets. ECS Electrochemistry Letters, 2015, 4, F35-F37.	1.9	12
44	Towards Implantable Bio-Supercapacitors: Pseudocapacitance of Ruthenium Oxide Nanoparticles and Nanosheets in Acids, Buffered Solutions, and Bioelectrolytes. Journal of the Electrochemical Society, 2015, 162, A5001-A5006.	2.9	48
45	Title is missing!. Electrochemistry, 2015, 83, 642-647.	1.4	0
46	Influence of the RuO ₂ Nanosheet Content in RuO ₂ Nanosheet-Pt/C Composite Toward Improved Performance of Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 2014, 161, F318-F322.	2.9	16
47	Model Electrode Studies of the Electrostatic Interaction between Electrochemically Dissolved Pt Ions and RuO ₂ Nanosheets. Journal of the Electrochemical Society, 2014, 161, F259-F262.	2.9	13
48	Evidence of Strong Metal-Support Interaction between Pt and Crystalline RuO ₂ Nanosheets by In-Situ AFM. Journal of the Electrochemical Society, 2014, 161, F360-F363.	2.9	5
49	All-Nanosheet Ultrathin Capacitors Assembled Layer-by-Layer <i>via</i> Solution-Based Processes. ACS Nano, 2014, 8, 2658-2666.	14.6	82
50	Achieving 100% Utilization of Reduced Graphene Oxide by Layer-by-Layer Assembly: Insight into the Capacitance of Chemically Derived Graphene in a Monolayer State. Journal of Physical Chemistry C, 2014, 118, 6624-6630.	3.1	12
51	Preferential {100} etching of boron-doped diamond electrodes and diamond particles by CO2 activation. Carbon, 2014, 70, 207-214.	10.3	18
52	Ruthenium Oxides as Supercapacitor Electrodes. , 2014, , 1813-1821.		5
53	Graphene (or Reduced Graphite Oxide Nanosheets). , 2014, , 954-963.		0
54	Synthesis of electro-deposited ordered mesoporous RuO using lyotropic liquid crystal and application toward micro-supercapacitors. Journal of Power Sources, 2013, 227, 153-160.	7.8	162

#	Article	IF	CITATIONS
55	A gas-diffusion cathode coated with oxide-catalyst for polymer electrolyte fuel cells using neither platinum catalyst nor carbon catalyst-support. Electrochimica Acta, 2013, 105, 224-229.	5.2	4
56	Effect of the boron content on the steam activation of boron-doped diamond electrodes. Carbon, 2013, 65, 206-213.	10.3	26
57	Improving oxygen reduction reaction activity and durability of 1.5nm Pt by addition of ruthenium oxide nanosheets. Electrochemistry Communications, 2013, 33, 123-126.	4.7	13
58	Development of a 4.2ÂV aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. Journal of Power Sources, 2013, 241, 572-577.	7.8	60
59	Fabrication of Ruthenium Metal Nanosheets via Topotactic Metallization of Exfoliated Ruthenate Nanosheets. Inorganic Chemistry, 2013, 52, 2280-2282.	4.0	43
60	Electrochemical Capacitor Behavior of RuO2 Nanosheets in Buffered Solution and Its Application to Hybrid Capacitor. Electrochemistry, 2013, 81, 795-797.	1.4	16
61	Lateral Size Effect on Electrochemical Capacitor Performance of Reduced Graphite Oxide Nanosheets. Electrochemistry, 2013, 81, 873-876.	1.4	5
62	Colossal Change in Capacitance of VO2 near the Metal-Insulator Transition. Electrochemistry, 2013, 81, 787-788.	1.4	2
63	Photochromogenic Nanosheet Crystallites of Tungstate with a 2D Bronze Structure. Inorganic Chemistry, 2012, 51, 1540-1543.	4.0	34
64	Catalytic etching of synthetic diamond crystallites by iron. Applied Surface Science, 2012, 258, 8128-8133.	6.1	23
65	4 V class aqueous hybrid electrochemical capacitor with battery-like capacity. RSC Advances, 2012, 2, 12144.	3.6	49
66	Synthesis of ordered mesoporous ruthenium by lyotropic liquid crystals and its electrochemical conversion to mesoporous ruthenium oxide with high surface area. Journal of Power Sources, 2012, 204, 244-248.	7.8	30
67	Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen. Diamond and Related Materials, 2011, 20, 1165-1170.	3.9	35
68	Graphene Nanoplatelets via Exfoliation of Platelet Carbon Nanofibers and Its Electric Double Layer Capacitance. Chemistry Letters, 2011, 40, 44-45.	1.3	11
69	Self-Embedment of Small Rectangular Parallelepiped Platinum Particle Array in Etch Pits on {100} Planes of Diamond Crystallites. Bulletin of the Chemical Society of Japan, 2011, 84, 376-378.	3.2	7
70	Oxygen Reduction Reaction Activity of Pt/Graphene Composites with Various Graphene Size. Electrochemistry, 2011, 79, 337-339.	1.4	25
71	Methanol Adsorption and Oxidation Behavior of Various Nanostructured Ruthenium-Oxides in Acidic Electrolyte. Electrochemistry, 2011, 79, 371-373.	1.4	6
72	Steam activation of boron doped diamond electrodes. Electrochimica Acta, 2011, 56, 5599-5604.	5.2	40

#	Article	IF	CITATIONS
73	Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bulletin, 2011, 36, 513-522.	3.5	368
74	Effect of Temperature and Adsorption Potential on the Electro-oxidation of Adsorbed Carbon Monoxide on Carbon Supported PtRu. Electrochemistry, 2010, 78, 36-41.	1.4	3
75	Electrochemical Capacitor Properties of NiO in Ionic Liquids. Chemistry Letters, 2010, 39, 544-545.	1.3	6
76	Synthesis of Mesoporous Carbon Using a Fullerenol-based Precursor Solution via Nanocasting with SBA-15. Chemistry Letters, 2010, 39, 777-779.	1.3	18
77	ã,¹ãƒ¹¼ãƒʿ⃹¼ã,ャãƒʿã,੶ã,¿. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2010, 61, 14-17.	0.2	0
78	Oxygen-reduction activity of silk-derived carbons. Journal of Power Sources, 2010, 195, 5840-5847.	7.8	69
79	Structural analyses of RuO2–TiO2/Ti and IrO2–RuO2–TiO2/Ti anodes used in industrial chlor-alkali membrane processes. Journal of Applied Electrochemistry, 2010, 40, 1789-1795.	2.9	58
80	Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets. Electrochimica Acta, 2010, 55, 857-864.	5.2	36
81	Oxygen reduction characteristics of several valve metal oxide electrodes in HClO4 solution. Electrochimica Acta, 2010, 55, 8220-8229.	5.2	33
82	Conductivity of Ruthenate Nanosheets Prepared via Electrostatic Self-Assembly: Characterization of Isolated Single Nanosheet Crystallite to Mono- and Multilayer Electrodes. Langmuir, 2010, 26, 18049-18054.	3.5	51
83	Synthesis of Nanosheet Crystallites of Ruthenate with an α-NaFeO ₂ -Related Structure and Its Electrochemical Supercapacitor Property. Inorganic Chemistry, 2010, 49, 4391-4393.	4.0	106
84	Titanium Oxide Nanosheet Modified PtRu/C Electrocatalyst for Direct Methanol Fuel Cell Anodes. Journal of Physical Chemistry C, 2010, 114, 13390-13396.	3.1	45
85	Activity and Durability of Ternary PtRuIrâ^•C for Methanol Electro-oxidation. Journal of the Electrochemical Society, 2009, 156, B397.	2.9	36
86	High oxygen-reduction activity of silk-derived activated carbon. Electrochemistry Communications, 2009, 11, 376-378.	4.7	105
87	Catalytic roughening of surface layers of BDD for various applications. Electrochimica Acta, 2009, 54, 5223-5229.	5.2	37
88	Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate. Journal of Solid State Chemistry, 2009, 182, 2997-3002.	2.9	44
89	An examination of the oxygen reduction reaction on RuO2-based oxide coatings formed on titanium substrates. Catalysis Today, 2009, 146, 248-252.	4.4	26
90	Preparation of Mesoporous Ptâ^'Ru Alloy Fibers with Tunable Compositions via Evaporation-Mediated Direct Templating (EDIT) Method Utilizing Porous Anodic Alumina Membranes. Chemistry of Materials, 2009, 21, 3414-3423.	6.7	48

#	Article	IF	CITATIONS
91	Title is missing!. Electrochemistry, 2009, 77, 68-72.	1.4	0
92	Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution. Electrochemistry Communications, 2008, 10, 668-672.	4.7	91
93	Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution. Electrochimica Acta, 2008, 54, 566-573.	5.2	53
94	Swelling of Layered Potassium Ruthenate into Nanosheet Crystallites. Materials Research Society Symposia Proceedings, 2008, 1148, 1.	0.1	0
95	Catalytic Excavation and Graphitization of Activated Carbon by Cobalt Nanoparticles. Chemistry Letters, 2008, 37, 1194-1195.	1.3	12
96	Development of Materials and Evaluation Methods for PEFCs. Electrochemistry, 2007, 75, 105-114.	1.4	9
97	Evaluation of the Redox Behavior of Hydrous Ruthenium Oxides: Effect of Temperature and Acid Concentration on the Electrochemical Behavior of Layered Ruthenium Oxide. Electrochemistry, 2007, 75, 645-648.	1.4	9
98	Fabrication of Thin-Film, Flexible, and Transparent Electrodes Composed of Ruthenic Acid Nanosheets by Electrophoretic Deposition and Application to Electrochemical Capacitors. Journal of the Electrochemical Society, 2006, 153, A255.	2.9	78
99	Metal Nanoparticle Arrays Self-Implanted in Synthetic Diamond Crystallites and Films. ECS Meeting Abstracts, 2006, , .	0.0	0
100	Effect of the Crystal Plane on the Catalytic Etching Behavior of Diamond Crystallites by Cobalt Nanoparticles. Chemistry Letters, 2006, 35, 1216-1217.	1.3	19
101	Co-catalytic effect of nanostructured ruthenium oxide towards electro-oxidation of methanol and carbon monoxide. Electrochemistry Communications, 2006, 8, 411-415.	4.7	50
102	Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochimica Acta, 2006, 52, 1742-1748.	5.2	169
103	Catalytic creation of channels in the surface layers of highly oriented pyrolytic graphite by cobalt nanoparticles. Carbon, 2006, 44, 2338-2340.	10.3	44
104	Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1â^'xVxO2. Journal of Power Sources, 2006, 160, 1480-1486.	7.8	35
105	Performance of ternary PtRuRh/C electrocatalyst with varying Pt:Ru:Rh ratio for methanol electro-oxidation. Journal of Applied Electrochemistry, 2006, 36, 1117-1125.	2.9	33
106	Preparation of a novel organic derivative of the layered perovskite bearing HLaNb2O7·nH2O interlayer surface trifluoroacetate groups. Materials Research Bulletin, 2006, 41, 834-841.	5.2	31
107	Catalytic Formation of Nanochannels in the Surface Layers of Diamonds by Metal Nanoparticles. Electrochemical and Solid-State Letters, 2006, 9, C114.	2.2	24
108	Catalytic Linear Grooving of Graphite Surface Layers by Pt, Ru, and PtRu Nanoparticles. Chemistry Letters, 2005, 34, 1008-1009.	1.3	11

#	Article	IF	CITATIONS
109	Incorporation of Ethylenediamine as a Bi-layer in the Interlayer Space of Tetratitanic Acid by Re-stacking Exfoliated Nanosheets. Bulletin of the Chemical Society of Japan, 2005, 78, 633-637.	3.2	4
110	Kinetics of CH3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry. Journal of Electroanalytical Chemistry, 2005, 576, 215-221.	3.8	108
111	Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes. Journal of Catalysis, 2005, 229, 176-184.	6.2	96
112	Dependence of the Preparation Temperature of Pt[sub 0.7]Co[sub 0.3]â^•C Catalysts on the Structure of the Alloy Particles and the Carbon Supports. Electrochemical and Solid-State Letters, 2005, 8, B34.	2.2	11
113	Preparation of a transparent and flexible self-standing film of layered titania/isostearate nanocomposite. Journal of Materials Research, 2005, 20, 1308-1315.	2.6	3
114	Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy:Â The Origin of Large Capacitance. Journal of Physical Chemistry B, 2005, 109, 7330-7338.	2.6	406
115	Investigation on the Redox Behavior of Rutile-Type Ti _{1–} <i>_x</i> V <i>_x</i> O ₂ . Electrochemistry, 2005, 73, 1026-1029.	1.4	1
116	Microporous Silica Particles Prepared by the Salt-Catalytic Sol-Gel Process with Extremely Low Content of Water. Journal of Sol-Gel Science and Technology, 2004, 29, 19-24.	2.4	4
117	Electrical and magnetic properties of ion-exchangeable layered ruthenates. Journal of Solid State Chemistry, 2004, 177, 4542-4545.	2.9	15
118	Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu. Electrochemistry Communications, 2004, 6, 480-483.	4.7	90
119	Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta, 2004, 49, 313-320.	5.2	112
120	Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate. Journal of the Electrochemical Society, 2004, 151, A1181.	2.9	79
121	Title is missing!. Catalysis Surveys From Asia, 2003, 7, 21-29.	2.6	13
122	A Layered Tungstic Acid H2W2O7×nH2O with a Double-Octahedral Sheet Structure: Conversion Process from an Aurivillus Phase Bi2W2O9 and Structural Characterization ChemInform, 2003, 34, no.	0.0	0
123	Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2003, 42, 4092-4096.	13.8	515
124	Effects of the surface area of carbon support on the characteristics of highly-dispersed Ptî—,Ru particles as catalysts for methanol oxidation. Electrochimica Acta, 2003, 48, 3861-3868.	5.2	147
125	Reactions of Alkoxyl Derivatives of a Layered Perovskite with Alcohols:Â Substitution Reactions on the Interlayer Surface of a Layered Perovskite. Chemistry of Materials, 2003, 15, 636-641.	6.7	53
126	A Layered Tungstic Acid H2W2O7·nH2O with a Double-Octahedral Sheet Structure:  Conversion Process from an Aurivillius Phase Bi2W2O9 and Structural Characterization. Inorganic Chemistry, 2003, 42, 4479-4484.	4.0	53

#	Article	IF	CITATIONS
127	Intercalation Behavior ofn-Alkylamines into a Protonated Form of a Layered Perovskite Derived from Aurivillius Phase Bi2SrTa2O9. Chemistry of Materials, 2003, 15, 632-635.	6.7	101
128	57 Characteristics of highly active PtRu/C anode catalysts for DMFC. Studies in Surface Science and Catalysis, 2003, , 279-282.	1.5	12
129	The Effect of the Nano and Microstructure of PtRu/C Electrocatalysts Towards Methanol and Carbon Monoxide Oxidation. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
130	Microporous Structure of Alumina Prepared by a Salt Catalytic Sol-Gel Process. Chemistry Letters, 2002, 31, 110-111.	1.3	5
131	Conversion of Aurivillius Phases Bi2ANaNb3O12(A = Sr or Ca) into the Protonated Forms of Layered Perovskite via Acid Treatment. Chemistry of Materials, 2002, 14, 2946-2952.	6.7	27
132	Charge Storage Capabilities of Rutile-Type RuO[sub 2]-VO[sub 2] Solid Solution for Electrochemical Supercapacitors. Electrochemical and Solid-State Letters, 2002, 5, A170.	2.2	54
133	Electrophoretic deposition of negatively charged tetratitanate nanosheets and transformation into preferentially oriented TiO2(B) film. Journal of Materials Chemistry, 2002, 12, 3814-3818.	6.7	124
134	Size effects of ultrafine Pt–Ru particles on the electrocatalytic oxidation of methanol. Chemical Communications, 2001, , 341-342.	4.1	87
135	Molybdenum Oxide/Carbon Composite Electrodes as Electrochemical Supercapacitors. Electrochemical and Solid-State Letters, 2001, 4, A145.	2.2	68
136	Preparation and HREM Characterization of a Protonated Form of a Layered Perovskite Tantalate from an Aurivillius Phase Bi2SrTa2O9via Acid Treatment. Inorganic Chemistry, 2001, 40, 5768-5771.	4.0	58
137	Effects of the Addition of Calcium on the Pseudocapacitance of Ruthenium Oxide Electrodes. Electrochemistry, 2001, 69, 493-494.	1.4	3
138	Conversion of an Aurivillius Phase Bi2SrNaNb3O12 into Its Protonated Form via Treatment with Various Mineral Acids. Materials Research Society Symposia Proceedings, 2000, 658, 6241.	0.1	0
139	Size effects of platinum particles on the electro-oxidation of methanol in an aqueous solution of HClO4. Electrochemistry Communications, 2000, 2, 671-674.	4.7	130
140	Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol. Journal of the Electrochemical Society, 2000, 147, 4421.	2.9	159
141	Synthesis and Structures of Reduced Niobates with Four Perovskite-like Layers and Their Semiconducting Properties. Journal of Solid State Chemistry, 1999, 148, 508-512.	2.9	9
142	Synthesis of reduced layered titanoniobates KTi1â^'xNb1+xO5. Materials Letters, 1999, 39, 184-187.	2.6	7
143	New Conversion Reaction of an Aurivillius Phase into the Protonated Form of the Layered Perovskite by the Selective Leaching of the Bismuth Oxide Sheet. Journal of the American Chemical Society, 1999, 121, 11601-11602.	13.7	59
144	Synthesis and Structural Study of the KNb4O6-Type Compound Journal of the Ceramic Society of Japan, 1999, 107, 318-321.	1.3	3

#	Article	IF	CITATIONS
145	Pseudocapacitance of Molybdenum Oxide Particles Highly Dispersed on Glassy Carbon Surface. Electrochemistry, 1999, 67, 1187-1188.	1.4	16

The relationship between structural variation and electrical properties in the spinel MgV2â^'xTixO4 (0) Tj ETQq0 0 04rgBT /Overlock 10 Tr 146

147	Synthesis and structures of carrier doped titanates with the Ruddlesden–Popper structure (Sr0.95La0.05)n+1TinO3n+1 (n=1, 2). Solid State Ionics, 1998, 108, 315-319.	2.7	16
148	Synthesis of Na1-xLnxNbO3 (Ln=La, Nd, Sm, Gd) and their Structures and Electrical Properties. Materials Research Society Symposia Proceedings, 1998, 547, 267.	0.1	0
149	Preparation of Stoichiometric and Nonstoichiometric Magnesium Titanate Spinels. Journal of the Ceramic Society of Japan, 1997, 105, 101-105.	1.3	7

The Rare-Earth Dependence on the Solid Solution Formation and Electrical Properties of KCa<sub>2-<i>x</i></sub>R<sub><i>x</i></sub>Nb<sub>3</sub**&g**t;O<**&**ub>10& (R=Nd, Sm, Gd and Ce). Journal of the Ceramic Society of Japan, 1997, 105, 284-287. 150