Beemkumar Nagappan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9032961/beemkumar-nagappan-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75	1,930	24	42
papers	citations	h-index	g-index
75 ext. papers	2,400 ext. citations	2.9 avg, IF	5.96 L-index

#	Paper	IF	Citations
75	A Review on Factors Influencing the Mismatch Losses in Solar Photovoltaic System. <i>International Journal of Photoenergy</i> , 2022 , 2022, 1-27	2.1	1
74	Performance analysis of sustainable solar energy operated ejector refrigeration system with the combined effect of Scheffler and parabolic trough collectors to lower greenhouse gases <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	0
73	Detailed analysis on reducing wastage and exploiting the production process of bio-oil from in-edible and waste Sinapis arvensis seed oil. <i>Chemical Engineering and Processing: Process Intensification</i> , 2022 , 174, 108879	3.7	5
72	Investigation on the thermal management of solar photo voltaic cells cooled by phase change material. <i>Journal of Energy Storage</i> , 2022 , 52, 104914	7.8	0
71	Renewable Pathway and Twin Fueling Approach on Ignition Analysis of a Dual-Fuelled Compression Ignition Engine. <i>Energy & Energy </i>	4.1	19
70	Investigation on the effect of ultrasound irradiation on biodiesel properties and transesterification parameters. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 64769-64777	5.1	13
69	Influence of antioxidant additives on performance and emission characteristics of beef tallow biodiesel-fuelled C.I engine. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 12041-12055	5.1	27
68	Modelling and analysis of aircraft wing with and without winglet. <i>International Journal of Ambient Energy</i> , 2021 , 42, 363-373	2	2
67	Optimisation of cutting parameters for machining of newly developed Co-free hard-faced nuclear reactor components. <i>International Journal of Ambient Energy</i> , 2021 , 42, 143-149	2	
66	Control of room temperature fluctuations in the building by incorporating PCM in the roof. <i>Journal of Thermal Analysis and Calorimetry</i> , 2021 , 143, 3039-3046	4.1	11
65	Experimental investigation on solar-powered ejector refrigeration system integrated with different concentrators. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 16298-16307	5.1	11
64	Detailed study on the effect of different ignition enhancers in the binary blends of diesel/biodiesel as a possible substitute for unaltered compression ignition engine. <i>Petroleum Science</i> , 2020 , 17, 1151-1	1 18	25
63	Efficiency enhancement in a PV operated solar pump by effective design of VFD and tracking system. <i>Materials Today: Proceedings</i> , 2020 , 33, 454-462	1.4	3
62	Feasibility study of employing diverse antioxidants as an additive in research diesel engine running with diesel-biodiesel blends. <i>Fuel</i> , 2020 , 277, 118161	7.1	16
61	An experimental study on the influence of an oxygenated additive in diesel engine fuelled with neat papaya seed biodiesel/diesel blends. <i>Fuel</i> , 2020 , 268, 117254	7.1	79
60	Experimental Investigation and Numerical Modeling of Room Temperature Control in Buildings by the Implementation of Phase Change Material in the Roof. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2020 , 142,	2.3	6
59	Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste. <i>Arabian Journal for Science and Engineering</i> , 2020 , 45, 563-574	2.5	14

(2019-2020)

58	Emission analysis of diesel and butanol blends in research diesel engine. <i>Petroleum Science and Technology</i> , 2020 , 38, 289-296	1.4	35
57	Effect of flame-retardant additive with polyurea for explosive environment. <i>Materials Research Innovations</i> , 2020 , 24, 409-413	1.9	1
56	The thermal performance analyses of the solar energy-powered thermal energy storage system with MgCl2l6H2O as PCM. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2020 , 42, 1	2	3
55	Study on the effect on combining long-chain additive with neat bio-diesel fueled engine to examine its ignition characteristics. <i>Fuel</i> , 2020 , 279, 118400	7.1	15
54	Performance and emission characteristics of bio fuelled CI engine using palm oil and waste cooking oil 2020 ,		9
53	Influence of nano catalyst on performance of DI diesel engine with blends of Citronella oil using Taguchi approach 2020 ,		9
52	Multi-objective optimization of VCR diesel engine performance and emissions fueled with diesel-lime steam oil blends using grey relational analysis 2020 ,		9
51	Taguchi based optimization of diesel engine parameters with blends of lemon grass oil with ZnO 2020 ,		10
50	Performance study of a domestic refrigerator using CuO/AL2O3-R22 nanorefrigerant as a working fluid. <i>International Journal of Ambient Energy</i> , 2020 , 41, 152-156	2	14
49	Experimental Investigation on the Treatment of Mixed Market Waste by a Novel Rotary Air Dryer. Waste and Biomass Valorization, 2020 , 11, 2153-2162	3.2	1
48	Combustion, performances, and emissions characteristics of diesel engine fuelled with diesel-aqueous zinc oxide nanofluid blends. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 1-15	1.6	15
47	Experimental assessment of performance and exhaust emission characteristics of a diesel engine fuelled with Punnai biodiesel/butanol fuel blends. <i>Petroleum Science</i> , 2019 , 16, 1471-1478	4.4	78
46	Experimental investigation of diesel engine performance fuelled with the blends of Jatropha curcas, ethanol, and diesel. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 8633-8639	5.1	19
45	Effect of nano-fluid on reducing the smoke emissions from diesel engine. <i>Petroleum Science and Technology</i> , 2019 , 37, 2283-2287	1.4	2
44	Experimental study on Al2O3 /H2O nanofluid with conical sectional insert in concentric tube heat exchanger. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 1-13	1.6	5
43	Effect of conical strip inserts in a parabolic trough solar collector under turbulent flow. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 1-13	1.6	5
42	Experimental Testing and Evaluation of Neat Biodiesel and Heptanol Blends in Diesel Engine. <i>Journal of Testing and Evaluation</i> , 2019 , 47, 20170307	1	65
41	A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 10662-10672	5.1	90

40	Comparative experimental study on parabolic trough collector integrated with thermal energy storage system by using different reflective materials. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 137, 941-948	4.1	12
39	Performance evaluation and emission characteristics of biodiesel-ignition enhancer blends propelled in a research diesel engine. <i>International Journal of Green Energy</i> , 2019 , 16, 277-283	3	78
38	Air nanobubble-enhanced combustion study using mustard biodiesel in a common rail direct injection engine. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 41, 1809-	1876	12
37	Experimental exploration and theoretical certainty of thermal conductivity and viscosity of MgO-therminol 55 nanofluid. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2019 , 41, 451-467	1.6	8
36	Experimental analysis of mechanical properties of aluminium alloy weldments by friction welding process under cryogenic treatment. <i>International Journal of Ambient Energy</i> , 2019 , 40, 82-85	2	3
35	Enhancing heat transfer rate in a car radiator by using Al2O3 nanofluid as a coolant. <i>International Journal of Ambient Energy</i> , 2019 , 40, 367-373	2	10
34	Effect of diethyl ether blended with neem oil methyl esters in CI engine. <i>International Journal of Ambient Energy</i> , 2019 , 40, 116-118	2	27
33	Impact of antioxidant additives on the performance and emission characteristics of C.I engine fuelled with B20 blend of rice bran biodiesel. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 17634-17644	5.1	34
32	Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. <i>Petroleum Science</i> , 2018 , 15, 176-184	4.4	90
31	Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. <i>Heat and Mass Transfer</i> , 2018 , 54, 1803-1811	2.2	88
30	Performance improvement of D-sorbitol PCM-based energy storage system with different fins. <i>International Journal of Ambient Energy</i> , 2018 , 39, 372-376	2	9
29	Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. <i>Atmospheric Pollution Research</i> , 2018 , 9, 47-52	4.5	111
28	Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. <i>AEJ - Alexandria Engineering Journal</i> , 2018 , 57, 2627-2631	6.1	103
27	Emission and combustion profile study of unmodified research engine propelled with neat biofuels. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 19643-19656	5.1	61
26	Energy and Exergy Analysis of Multi-Temperature PCMs Employed in a Latent Heat Storage System and Parabolic Trough Collector. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2018 , 43, 211-220	3.8	10
25	Analysis of heat transfer through a high strength concrete with circular pipe in a safety vessel of reactor vault. <i>International Journal of Ambient Energy</i> , 2018 , 39, 678-684	2	O
24	Effect of injection parameters on the reduction of NOx emission in neat bio-diesel fuelled diesel engine. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects,</i> 2018 , 40, 186-192	1.6	30
23	Exhaust emission study on neat biodiesel and alcohol blends fueled diesel engine. <i>Energy Sources,</i> Part A: Recovery, Utilization and Environmental Effects, 2018 , 40, 115-119	1.6	74

22	Analysis of emission reduction in ethyneBiodiesel-aspirated diesel engine. <i>International Journal of Green Energy</i> , 2018 , 15, 436-440	3	70
21	Comparative study of room temperature control in buildings with and without the use of PCM in walls. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2018 , 40, 1765-1771	1.6	9
20	Heat transfer enhancement of the latent heat storage system using different encapsulating materials with and without fins. <i>International Journal of Ambient Energy</i> , 2017 , 38, 77-84	2	7
19	Performance and emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 1021-1026	2.8	72
18	Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 13136-13141	5.1	70
17	Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins. <i>Arabian Journal for Science and Engineering</i> , 2017 , 42, 2055-2065	2.5	13
16	Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 197, 012017	0.4	4
15	Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 197, 012033	0.4	1
14	Investigation of Sensible and Latent Heat Storage System using various HTF. <i>IOP Conference Series:</i> Materials Science and Engineering, 2017 , 197, 012038	0.4	1
13	Performance, Combustion, and Emission Analysis of Neat Palm Oil Biodiesel and Higher Alcohol Blends in a Diesel Engine. <i>Energy & Diesel Engine</i> . <i>E</i>	4.1	76
12	Influence of an oxygenated additive on emission of an engine fueled with neat biodiesel. <i>Petroleum Science</i> , 2017 , 14, 791-797	4.4	70
11	Analysis of Thermal Energy Storage Tank by ANSYS and Comparison with Experimental Results to Improve its Thermal Efficiency. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 197, 0120	039 1	2
10	Performance Improvement of Energy Storage System with nano-additivesin HTF. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 197, 012036	0.4	1
9	Heat transfer enhancement of a cascaded thermal energy storage system with various encapsulation arrangements. <i>Thermal Science</i> , 2017 , 227-227	1.2	7
8	Experimental analysis of heat transfer characteristics of solar energy based latent heat storage system. <i>Materials Today: Proceedings</i> , 2016 , 3, 2475-2482	1.4	8
7	Experimental Investigation on Enhancement of Heat Transfer in Thermal Energy Storage System Using Paraffin Wax as PCM. <i>Applied Mechanics and Materials</i> , 2015 , 766-767, 457-462	0.3	2
6	Experimental investigation on air cooler with thermal storage 2010,		2
5	Exploration of non-edible palm kernel oil as a potential heat transfer fluid for higher temperature applications. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	5

4	EMISSIONS ANALYSIS ON DIESEL ENGINE FUELED WITH PALM OIL BIODIESEL AND PENTANOL BLENDS. <i>Journal of Oil Palm Research</i> ,380-386	Ο	89
3	EFFECT OF INJECTION TIMING ON PERFORMANCE AND EMISSION CHARACTERISTICS OF PALM BIODIESEL AND DIESEL BLENDS. <i>Journal of Oil Palm Research</i> ,	О	40
2	Experimental and numerical analysis of heat transfer from main vessel to safety vessel using H2O/Al2O3 nanofluid in a nuclear reactor vault114, 135-145		4
1	Experimental analysis on diffusion absorption refrigeration cycle with the magnetic field. <i>International Journal of Ambient Energy</i> ,1-5	2	