Zhigang Shuai

List of Publications by Citations

Source: https://exaly.com/author-pdf/9032588/zhigang-shuai-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23,646 82 405 139 h-index g-index citations papers 26,553 7.15 7.5 432 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
405	Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4782-3	16.4	1045
404	Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. <i>ACS Nano</i> , 2011 , 5, 2593-600	16.7	697
403	Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6335-4	6 ^{16.4}	458
402	White light emission from a single organic molecule with dual phosphorescence at room temperature. <i>Nature Communications</i> , 2017 , 8, 416	17.4	457
401	Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. <i>ACS Nano</i> , 2013 , 7, 4610-6	16.7	442
400	First-principles prediction of charge mobility in carbon and organic nanomaterials. <i>Nanoscale</i> , 2012 , 4, 4348-69	7.7	412
399	Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. <i>CheM</i> , 2016 , 1, 592-602	16.2	399
398	Computational methods for design of organic materials with high charge mobility. <i>Chemical Society Reviews</i> , 2010 , 39, 423-34	58.5	360
397	Role of Dimensionality on the Two-Photon Absorption Response of Conjugated Molecules: The Case of Octupolar Compounds. <i>Advanced Functional Materials</i> , 2002 , 12, 631-641	15.6	334
396	Toward quantitative prediction of molecular fluorescence quantum efficiency: role of duschinsky rotation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9333-9	16.4	324
395	Charge separation in localized and delocalized electronic states in polymeric semiconductors. <i>Nature</i> , 1998 , 392, 903-906	50.4	299
394	Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1487	16-24	276
393	Spin Drbit Coupling and Intersystem Crossing in Conjugated Polymers: A Configuration Interaction Description. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 3899-3907	2.8	269
392	Theory of excited state decays and optical spectra: application to polyatomic molecules. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 7817-31	2.8	267
391	Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors: Oligothiophenes. <i>Chemistry of Materials</i> , 2008 , 20, 3205-3211	9.6	265
390	Excited-State Electronic Structure of Conjugated Oligomers and Polymers: A Quantum-Chemical Approach to Optical Phenomena. <i>Accounts of Chemical Research</i> , 1999 , 32, 267-276	24.3	263
389	Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1443-8	6.4	254

(2018-2003)

388	Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6740-5	16.4	252
387	Theoretical predictions of size-dependent carrier mobility and polarity in graphene. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17728-9	16.4	247
386	Solution-processed, high-performance nanoribbon transistors based on dithioperylene. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1-3	16.4	239
385	An Ultra Closely Estacked Organic Semiconductor for High Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2007 , 19, 2613-2617	24	235
384	Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1010-1015	16.4	228
383	Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes. <i>Physical Review Letters</i> , 2000 , 84, 131-4	7.4	223
382	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. <i>Nature Communications</i> , 2018 , 9, 2963	17.4	216
381	Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene. <i>Physical Review B</i> , 2009 , 79,	3.3	215
380	A cyclic triphenylamine dimer for organic field-effect transistors with high performance. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15940-1	16.4	212
379	Intersystem crossing processes in nonplanar aromatic heterocyclic molecules. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10490-9	2.8	187
378	1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion. <i>Chemical Communications</i> , 2005 , 2161-3	5.8	187
377	Extended squaraine dyes with large two-photon absorption cross-sections. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14444-5	16.4	181
376	Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled "molecular level heterojunction" with air stable ambipolar charge transport behavior. <i>Advanced Materials</i> , 2012 , 24, 2603-7	24	176
375	Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems. <i>Nanotechnology</i> , 2007 , 18, 424029	3.4	167
374	Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer. <i>Advanced Materials</i> , 2019 , 31, e1808242	24	164
373	From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. <i>Chemical Society Reviews</i> , 2014 , 43, 2662-79	58.5	162
372	Theoretical investigation of the lowest singlet and triplet states in poly(paraphenylene vinylene)oligomers. <i>Journal of Chemical Physics</i> , 1995 , 102, 2042-2049	3.9	161
371	Dynamic Ultralong Organic Phosphorescence by Photoactivation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8425-8431	16.4	158

370	Excited state radiationless decay process with Duschinsky rotation effect: formalism and implementation. <i>Journal of Chemical Physics</i> , 2007 , 126, 114302	3.9	157
369	Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4085		155
368	Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level. <i>Physics Reports</i> , 2014 , 537, 123-156	27.7	154
367	Multifunctional bipolar triphenylamine/oxadiazole derivatives: highly efficient blue fluorescence, red phosphorescence host and two-color based white OLEDs. <i>Chemical Communications</i> , 2009 , 77-9	5.8	153
366	Fullerene/sulfur-bridged annulene cocrystals: two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 558-61	16.4	150
365	Balanced carrier transports of electrons and holes in silole-based compoundsa theoretical study. Journal of Physical Chemistry A, 2006 , 110, 7138-43	2.8	148
364	Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. <i>Nature Communications</i> , 2018 , 9, 3044	17.4	146
363	Tuning the Energy Level and Photophysical and Electroluminescent Properties of Heavy Metal Complexes by Controlling the Ligation of the Metal with the Carbon of the Carbazole Unit. <i>Advanced Functional Materials</i> , 2007 , 17, 651-661	15.6	140
362	Aggregation induced blue-shifted emissionthe molecular picture from a QM/MM study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5545-52	3.6	138
361	Multiscale study of charge mobility of organic semiconductor with dynamic disorders. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 3309-14	3.6	135
360	Correlation Function Formalism for Triplet Excited State Decay: Combined Spin-Orbit and Nonadiabatic Couplings. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 1132-43	6.4	132
359	Polymorphism-Dependent and Switchable Emission of Butterfly-Like Bis(diarylmethylene)dihydroanthracenes. <i>Chemistry of Materials</i> , 2015 , 27, 6601-6607	9.6	131
358	Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12929-38	16.4	129
357	Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 36-41	3.4	123
356	Charge-transfer complex crystal based on extended-Econjugated acceptor and sulfur-bridged annulene: charge-transfer interaction and remarkable high ambipolar transport characteristics. <i>Advanced Materials</i> , 2014 , 26, 4093-9	24	119
355	Theoretical study of thiophene oligomers: Electronic excitations, relaxation energies, and nonlinear optical properties. <i>Journal of Chemical Physics</i> , 1993 , 98, 8819-8828	3.9	117
354	From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1549-1556	16.4	113
353	Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level. <i>Advanced Materials</i> , 2011 , 23, 1145-53	24	113

(2017-2007)

352	Synthesis and Photovoltaic Properties of a Solution-Processable Organic Molecule Containing Triphenylamine and DCM Moieties. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8661-8666	3.8	112
351	MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. <i>Molecular Physics</i> , 2018 , 116, 1078-1090	1.7	110
350	Triplet-Polaron-Interaction-Induced Upconversion from Triplet to Singlet: a Possible Way to Obtain Highly Efficient OLEDs. <i>Advanced Materials</i> , 2016 , 28, 4740-6	24	107
349	Single Crystalline Submicrotubes from Small Organic Molecules. <i>Chemistry of Materials</i> , 2005 , 17, 6430-6	5 <u>4.</u> 35	106
348	Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 1153-1158		105
347	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy. <i>Advanced Materials</i> , 1998 , 10, 1343-1348	24	104
346	Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. <i>Applied Physics Letters</i> , 2007 , 91, 133511	3.4	104
345	Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles. <i>Scientific Reports</i> , 2016 , 7, 19968	4.9	103
344	Multilevel conductance switching of memory device through photoelectric effect. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20053-9	16.4	99
343	Negative differential resistance induced by intermolecular interaction in a bimolecular device. <i>Applied Physics Letters</i> , 2007 , 91, 233512	3.4	97
342	Electrostatic Interaction-Induced Room-Temperature Phosphorescence in Pure Organic Molecules from QM/MM Calculations. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2893-8	6.4	96
341	Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model. <i>Advanced Materials</i> , 2012 , 24, 3568-72	24	96
340	Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. <i>National Science Review</i> , 2017 , 4, 224-239	10.8	94
339	Theoretical investigation of the negative differential resistance in squashed C60 molecular device. <i>Applied Physics Letters</i> , 2008 , 92, 263304	3.4	94
338	Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. Journal of Physical Chemistry A, 2014 , 118, 9094-104	2.8	92
337	Static and dynamic third-harmonic generation in long polyacetylene and polyparaphenylene vinylene chains. <i>Physical Review B</i> , 1991 , 44, 5962-5965	3.3	92
336	Theoretical Study of Conversion and Decay Processes of Excited Triplet and Singlet States in a Thermally Activated Delayed Fluorescence Molecule. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13448-1	13:456	91
335	Isoindigo-Based Polymers with Small Effective Masses for High-Mobility Ambipolar Field-Effect Transistors. <i>Advanced Materials</i> , 2017 , 29, 1702115	24	91

334	Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads: facilitated by metal ion and photomodulation in the presence of spiropyran. <i>Journal of the American Chemical Society</i> , 2007 , 129, 6839-46	16.4	91
333	Polyaniline/Fe3O4 nanoparticle composite: synthesis and reaction mechanism. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 5052-8	3.4	89
332	Triplet formation and decay in conjugated polymer devices. Chemical Physics Letters, 2002, 360, 195-20)1 2.5	89
331	Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance. <i>Macromolecules</i> , 2011 , 44, 4230-4240	5.5	87
330	Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes. <i>Journal of Chemical Physics</i> , 2009 , 130, 024704	3.9	86
329	Solution-processed solid solution of a novel carbazole derivative for high-performance blue phosphorescent organic light-emitting diodes. <i>Advanced Materials</i> , 2010 , 22, 4167-71	24	86
328	First synthesis of 2,3,6,7-tetrabromonaphthalene diimide. <i>Organic Letters</i> , 2007 , 9, 3917-20	6.2	86
327	Chain-Length Dependence of Singlet and Triplet Exciton Formation Rates in Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2004 , 14, 684-692	15.6	85
326	A Densely and Uniformly Packed Organic Semiconductor Based on Annelated 町rithiophenes for High-Performance Thin Film Transistors. <i>Advanced Functional Materials</i> , 2009 , 19, 272-276	15.6	84
325	Vibration correlation function formalism of radiative and non-radiative rates for complex molecules. <i>Chemical Physics</i> , 2010 , 370, 215-222	2.3	83
324	Theoretical insights into the aggregation-induced emission by hydrogen bonding: a QM/MM study. Journal of Physical Chemistry A, 2012 , 116, 3881-8	2.8	82
323	Nonlinear optical processes in short polyenes: Configuration interaction description of two-photon absorption and third-harmonic generation. <i>Journal of Chemical Physics</i> , 1992 , 97, 1132-1137	3.9	82
322	Understanding the charge transport and polarities in organic donor-acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. <i>Advanced Materials</i> , 2015 , 27, 1443-9	24	79
321	Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). <i>Chemical Communications</i> , 2015 , 51, 11777-9	5.8	78
320	Low-dimensional aggregates from stilbazolium-like dyes. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4060-3	16.4	78
319	Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. <i>Nanoscale</i> , 2016 , 8, 15173-80	7.7	77
318	Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 285-91	6.4	77
317	Nature of photoexcitations in poly (paraphenylene vinylene) and its oligomers. <i>Chemical Physics Letters</i> , 1994 , 228, 301-306	2.5	77

316	Modeling thermoelectric transport in organic materials. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 16505-20	3.6	75	
315	Theoretical comparative studies of charge mobilities for molecular materials: Pet versus bnpery. <i>Organic Electronics</i> , 2008 , 9, 635-640	3.5	75	
314	From Molecular Packing Structures to Electronic Processes: Theoretical Simulations for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1702743	21.8	73	
313	Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. <i>Applied Physics Letters</i> , 2008 , 92, 243303	3.4	71	
312	Electronic structure of Econjugated oligomers and polymers: a quantum@hemical approach to transport properties. <i>Synthetic Metals</i> , 2001 , 125, 107-116	3.6	71	
311	Energy Level Alignment and Charge Carrier Mobility in Noncovalently Functionalized Graphene. Journal of Physical Chemistry Letters, 2013, 4, 2158-2165	6.4	70	
310	Symmetrized density-matrix renormalization-group method for excited states of Hubbard models. <i>Physical Review B</i> , 1996 , 54, 7598-7601	3.3	70	
309	Electronic structure and nonlinear optical properties of the fullerenes C60 and C70: A valence-effective-Hamiltonian study. <i>Physical Review B</i> , 1992 , 46, 16135-16141	3.3	69	
308	Photoactive gate dielectrics. Advanced Materials, 2010, 22, 3282-7	24	67	
307	Understanding the efficiency drooping of the deep blue organometallic phosphors: a computational study of radiative and non-radiative decay rates for triplets. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6829-6838	7.1	66	
306	Search for Organic Thermoelectric Materials with High Mobility: The Case of 2,7-Dialkyl[1]benzothieno[3,2-b][1]benzothiophene Derivatives. <i>Chemistry of Materials</i> , 2014 , 26, 2669-	2 87 7	66	
305	Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives. <i>Journal of Computational Chemistry</i> , 2012 , 33, 1862-9	3.5	66	
304	Organic thin-film transistors of phthalocyanines. Pure and Applied Chemistry, 2008, 80, 2231-2240	2.1	66	
303	Binaphthalene molecules with tetrathiafulvalene units: CD spectrum modulation and new chiral molecular switches by reversible oxidation and reduction of tetrathiafulvalene units. <i>Journal of Organic Chemistry</i> , 2006 , 71, 2123-30	4.2	66	
302	Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 21866-21870	3.8	66	
301	General model for the description of the third-order optical nonlinearitiesin conjugated systems: Application to the all-trans Etarotene molecule. <i>Physical Review B</i> , 1997 , 55, 1505-1516	3.3	64	
300	Influence of alkyl side-chain length on the carrier mobility in organic semiconductors: herringbone vs. pi p i stacking. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4546-4555	7.1	64	
299	Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core. <i>Chemical Communications</i> , 2005 , 3583-5	5.8	63	

298	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. <i>Chemistry of Materials</i> , 2007 , 19, 432-442	9.6	62
297	Water transport and purification in nanochannels controlled by asymmetric wettability. <i>Small</i> , 2011 , 7, 2225-31	11	61
296	Spectroscopic Signature of the Aggregation-Induced Emission Phenomena Caused by Restricted Nonradiative Decay: A Theoretical Proposal. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5040-5047	3.8	59
295	Correction vector method for exact dynamic NLO coefficients in restricted configuration space. <i>Chemical Physics Letters</i> , 1995 , 245, 224-229	2.5	59
294	An Acetylene-Containing Perylene Diimide Copolymer for High Mobility n-Channel Transistor in Air. <i>Macromolecules</i> , 2013 , 46, 2152-2158	5.5	58
293	An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices. <i>Journal of Chemical Physics</i> , 2011 , 134, 124102	3.9	58
292	First-principles investigation of organic semiconductors for thermoelectric applications. <i>Journal of Chemical Physics</i> , 2009 , 131, 224704	3.9	58
291	General Approach To Compute Phosphorescent OLED Efficiency. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6340-6347	3.8	57
290	GeAs2: A IVIV Group Two-Dimensional Semiconductor with Ultralow Thermal Conductivity and High Thermoelectric Efficiency. <i>Chemistry of Materials</i> , 2017 , 29, 6261-6268	9.6	57
289	Coordination complexes of 2-(4-quinolyl)nitronyl nitroxide with M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)]: syntheses, crystal structures, and magnetic characterization. <i>Inorganic Chemistry</i> , 2004 , 43, 4091	-8.1	57
288	Absorption and Emission in Quaterthienyl Thin Films. Advanced Materials, 2003, 15, 818-822	24	57
287	Comparison of density matrix renormalization group calculations with electron-hole models of exciton binding in conjugated polymers. <i>Journal of Chemical Physics</i> , 1998 , 108, 7451-7458	3.9	57
286	A-ED-EA Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700470	4.8	55
285	Solvent effects on the optical spectra and excited-state decay of triphenylamine-thiadiazole with hybridized local excitation and intramolecular charge transfer. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 5233-40	2.8	55
284	Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth. <i>Advanced Materials</i> , 2016 , 28, 1697-702	24	55
283	Geometric and electronic structures of the boron-doped photocatalyst TiO2. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 87-96	1.8	55
282	Computational evaluation of optoelectronic properties for organic/carbon materials. <i>Accounts of Chemical Research</i> , 2014 , 47, 3301-9	24.3	54
281	Theoretical study of radiative and non-radiative decay processes in pyrazine derivatives. <i>Journal of Chemical Physics</i> , 2011 , 135, 014304	3.9	54

(2016-2020)

Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation. <i>Advanced Materials</i> , 2020 , 32, e1908537	24	53	
Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6332-6339	16.4	53	
The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1646-1652		53	
Molecular Design of Negative Differential Resistance Device through Intermolecular Interaction. Journal of Physical Chemistry C, 2007 , 111, 19098-19102	3.8	53	
Time-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 5027-5039	6.4	52	
Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. <i>Journal of Chemical Physics</i> , 2014 , 141, 034704	3.9	52	
Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives. <i>Journal of Organic Chemistry</i> , 2007 , 72, 4936-46	4.2	52	
Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14094-103	3.6	52	
Theory of Charge Transport in Carbon Electronic Materials. <i>Springer Briefs in Molecular Science</i> , 2012 ,	0.6	51	
High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. <i>Chemical Communications</i> , 2007 , 1372-4	5.8	51	
Dibenzotetrathiafulvalene Bisimides: New Building Blocks for Organic Electronic Materials**. <i>Advanced Materials</i> , 2007 , 19, 3037-3042	24	51	
Size-dependent exciton chirality in (R)-(+)-1,1'-bi-2-naphthol dimethyl ether nanoparticles. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15439-44	16.4	50	
Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14207-16	3.6	49	
Side Chain Engineering of Polythiophene Derivatives with a Thienylene Vinylene Conjugated Side Chain for Application in Polymer Solar Cells. <i>Macromolecules</i> , 2012 , 45, 2312-2320	5.5	49	
Phenyl-substituted fluorene-dimer cored anthracene derivatives: highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3186		49	
Low-lying electronic excitations and nonlinear optic properties of polymers via symmetrized density matrix renormalization group method. <i>Synthetic Metals</i> , 1997 , 85, 1019-1022	3.6	49	
Coupled-cluster approach for studying the electronic and nonlinear optical properties of conjugated molecules. <i>Physical Review B</i> , 2000 , 62, 15452-15460	3.3	49	
Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. <i>Chemical Science</i> , 2016 , 7, 5573-5580	9.4	49	
	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. <i>Journal of the American Chemical Society,</i> 2020, 142, 6332-6339 The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. <i>Science in China Series B: Chemistry,</i> 2009, 52, 1646-1652 Molecular Design of Negative Differential Resistance Device through Intermolecular Interaction. <i>Journal of Physical Chemistry C,</i> 2007, 111, 19098-19102 Time-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature. <i>Journal of Chemical Theory and Computation,</i> 2018, 14, 5027-5039 Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. <i>Journal of Chemical Physics,</i> 2014, 141, 034704 Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives. <i>Journal of Organic Chemistry,</i> 2007, 72, 4936-46 Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory. <i>Physical Chemistry Chemical Physics,</i> 2016, 18, 14094-103 Theory of Charge Transport in Carbon Electronic Materials. <i>Springer Briefs in Molecular Science,</i> 2012, High two-photon cross-sections in bis/diarylaminostyryl) chromophores with electron-rich heterocycle and bis/(heterocycle)vinylene bridges. <i>Chemical Communications,</i> 2007, 1372-4 Dibenzotetrathia/fulvalene Bisimides: New Building Blocks for Organic Electronic Materials**. <i>Advanced Materials,</i> 2007, 19, 3037-3042 Size-dependent exciton chirality in (R)-(+)-1.1'-bi-2-naphthol dimethyl ether nanoparticles. <i>Journal of the American Chemical Society,</i> 2004, 126, 15439-44 Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics Study. <i>Physical Chemistry Ch</i>	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339 16.4 The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Science in China Series B: Chemistry, 2009, 52, 1646-1652 Molecular Design of Negative Differential Resistance Device through Intermolecular Interaction. Journal of Physical Chemistry C, 2007, 111, 19098-19102 Time-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature. Journal of Chemical Theory and Computation, 2018, 14, 5027-5039 Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. Journal of Chemical Physics, 2014, 141, 034704 Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives. Journal of Organic Chemistry, 2007, 72, 4936-46 Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory. Physical Chemistry Chemical Physics, 2016, 18, 14094-103 Theory of Charge Transport in Carbon Electronic Materials. Springer Briefs in Molecular Science, 2012, High two-photon cross-sections in bis (diarylaminostyryl) chromophores with electron-rich heterocycle and bis (heterocycle) vinylene bridges. Chemical Communications, 2007, 1372-4 Dibenzotetrathia (uvalene Bisimides: New Building Blocks for Organic Electronic Materials**. Advanced Materials, 2007, 19, 3037-3042 Size-dependent exciton chirality in (R)-(+)-1,1*-bi-2-naphthol dimethyl ether nanoparticles. Journal of the American Chemical Society, 2004, 126, 15439-44 Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. Physical Chemistry Chemical Physics, 2	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339 16-4 53 The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Science in China Series B: Chemistry, 2009, 52, 1646-1652 53 Molecular Design of Negative Differential Resistance Device through Intermolecular Interaction. Journal of Physical Chemistry C, 2007, 111, 19098-19102 38-53 Ime-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature. Journal of Chemical Theory and Computation, 2018, 14, 5027-5039 Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. Journal of Chemical Physics, 2014, 141, 034704 39-52 Helical molecular duplex strands: multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives. Journal of Organic Chemistry, 2007, 72, 4936-46-42-52 Efficient ambipolar transport properties in alternate stacking donon-acceptor complexes: from experiment to theory. Physical Chemistry Chemical Physics, 2016, 18, 14094-103-403 Theory of Charge Transport in Carbon Electronic Materials. Springer Briefs in Molecular Science, 2012, High two-photon cross-sections in bis (diarylaminostyryl) chromophores with electron-rich heterocycle and bis (heterocycle) in pylene bridges. Chemical Communications, 2007, 1372-4 Size-dependent exciton chirality in (R)-(1)-1, 1-bi-2-naphthol dimethyl ether nanoparticles. Journal of the American Chemical Society, 2004, 126, 15439-44 Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14, 14207-16-36-49 Phenyl-substituted fluorene-dimer cored anthracene derivatives: highly fluorescen

262	First-Principles Predictions of Thermoelectric Figure of Merit for Organic Materials: Deformation Potential Approximation. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 3338-47	6.4	48
261	Organic single crystal field-effect transistors based on 6H-pyrrolo[3,2-b:4,5-b]bis[1,4]benzothiazine and its derivatives. <i>Advanced Materials</i> , 2010 , 22, 2458-62	24	48
260	Tuning the fluorescence of 1-imino nitroxide pyrene with two chemical inputs: mimicking the performance of an "AND" gate. <i>Chemical Communications</i> , 2004 , 670-1	5.8	48
259	Real-time monitoring of hydrophobic aggregation reveals a critical role of cooperativity in hydrophobic effect. <i>Nature Communications</i> , 2017 , 8, 15639	17.4	47
258	Effects of intermolecular interaction and molecule-electrode couplings on molecular electronic conductance. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12304-8	3.4	47
257	Theory of Long-Lived Room-Temperature Phosphorescence in Organic Aggregates. <i>Accounts of Chemical Research</i> , 2021 , 54, 940-949	24.3	46
256	Hydrogen Bonding-Induced Morphology Dependence of Long-Lived Organic Room-Temperature Phosphorescence: A Computational Study. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 6948-6954	6.4	45
255	Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. <i>Nano Research</i> , 2012 , 5, 99-108	10	45
254	Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors. <i>Journal of Chemical Physics</i> , 2011 , 135, 104703	3.9	45
253	Naphtho[1,2-b:5,6-b?]dithiophene-Based Small Molecules for Thick-Film Organic Solar Cells with High Fill Factors. <i>Chemistry of Materials</i> , 2016 , 28, 943-950	9.6	44
252	The effects of pyridine derivative additives on interface processes at nanocrystalline TiO2 thin film in dye-sensitized solar cells. <i>Surface and Interface Analysis</i> , 2007 , 39, 809-816	1.5	44
251	Dynamical nonlinear optical coefficients from the symmetrized density-matrix renormalization-group method. <i>Physical Review B</i> , 1999 , 59, 14827-14830	3.3	44
250	On the nature of electronic excitations in poly(paraphenylenevinylene): A quantum-chemical investigation. <i>Journal of Chemical Physics</i> , 1999 , 111, 2829-2841	3.9	44
249	Nuclear quantum tunnelling and carrier delocalization effects to bridge the gap between hopping and bandlike behaviors in organic semiconductors. <i>Nanoscale Horizons</i> , 2016 , 1, 53-59	10.8	43
248	A wuantitative structure-property relationship study of the glass transition temperature of OLED materials. <i>Journal of Chemical Information and Computer Sciences</i> , 2003 , 43, 970-7		43
247	Puckered Arsenene: A Promising Room-Temperature Thermoelectric Material from First-Principles Prediction. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19080-19086	3.8	42
246	Two-photon absorption properties of iron(II) and ruthenium(II) trischelate complexes of 2,2':4,4' ':4',4' ''-quaterpyridinium ligands. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 472-8	2.8	42
245	Thermal Vibration Correlation Function Formalism for Molecular Excited State Decay Rates. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 1223-1232	4.9	41

244	Tuning Thermal Transport in Chain-Oriented Conducting Polymers for Enhanced Thermoelectric Efficiency: A Computational Study. <i>Advanced Functional Materials</i> , 2017 , 27, 1702847	15.6	41
243	Binding energy of 1Bu singlet excitons in the one-dimensional extended Hubbard-Peierls model. <i>Physical Review B</i> , 1997 , 55, 15368-15371	3.3	41
242	Janus monolayer of WSeTe, a new structural phase transition material driven by electrostatic gating. <i>Nanoscale</i> , 2018 , 10, 21629-21633	7.7	41
241	Naphtho[1,2-b:5,6-b?]dithiophene Based Two-Dimensional Conjugated Polymers for Highly Efficient Thick-Film Inverted Polymer Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 6947-6954	9.6	40
240	Molecular dynamics simulations of the supramolecular assembly between an azobenzene-containing surfactant and Eyclodextrin: role of photoisomerization. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 823-32	3.4	40
239	Fused-ring pyrazine derivatives for n-type field-effect transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 1122-9	9.5	40
238	Theoretical characterization of phenylene-based oligomers, polymers, and dendrimers. <i>Synthetic Metals</i> , 1999 , 100, 141-162	3.6	40
237	Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. <i>Science Advances</i> , 2018 , 4, eaap9861	14.3	39
236	Dynamic Ultralong Organic Phosphorescence by Photoactivation. <i>Angewandte Chemie</i> , 2018 , 130, 8561	-8,5667	39
235	Anisotropic Thermal Transport in Organic Molecular Crystals from Nonequilibrium Molecular Dynamics Simulations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5940-5946	3.8	39
234	Quantum-confinement effects on the ordering of the lowest-lying excited states in conjugated chains. <i>Physical Review B</i> , 1997 , 56, 9298-9301	3.3	39
233	Towards a better understanding of polymer-based light-emitting diodes: a theoretical insight into the basic phenomena. <i>Synthetic Metals</i> , 1996 , 78, 209-217	3.6	39
232	Intrinsic Charge Transport in Stanene: Roles of Bucklings and Electron P honon Couplings. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700143	6.4	38
231	Synergistic Optimization Enables Large-Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small-Area Rigid Devices. <i>Advanced Materials</i> , 2020 , 32, e2005153	24	38
230	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5206-9	16.4	38
229	Fascinating effect of dehydrogenation on the transport properties of N-heteropentacenes: transformation from p- to n-type semiconductor. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18181		38
228	Theoretical design of polythienylenevinylene derivatives for improvements of light-emitting and photovoltaic performances. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4491		38
227	Computational characterization of organic photovoltaic devices. <i>Theoretical Chemistry Accounts</i> , 2011 , 129, 291-301	1.9	37

226	Is there a Au-S bond dipole in self-assembled monolayers on gold?. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 4287-90	3.6	36
225	Electronic Structure of Self-Assembled Monolayers on Au(111) Surfaces: The Impact of Backbone Polarizability. <i>Advanced Functional Materials</i> , 2009 , 19, 3766-3775	15.6	36
224	Calculation of Ground and Excited State Polarizabilities of Unsubstituted and Donor/Acceptor Polyenes: A Comparison of the Finite-Field and Sum-Over-States Methods. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 2197-2201	2.8	36
223	Theoretical investigation of the lowest singlet and triplet excited states in oligo(phenylene vinylene)s and oligothiophenes. <i>Synthetic Metals</i> , 1996 , 76, 61-65	3.6	36
222	Static and dynamic optical nonlinearities in conjugated polymers: Third-harmonic generation and the dc Kerr effect in polyacetylene, polyparaphenylene vinylene, and polythienylene vinylene. <i>Physical Review B</i> , 1992 , 46, 4395-4404	3.3	36
221	Design, Synthesis, and Properties of Asymmetrical Heteroacene and Its Application in Organic Electronics. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10565-10571	3.8	35
220	Effects of pressure and temperature on the carrier transports in organic crystal: a first-principles study. <i>Journal of Chemical Physics</i> , 2008 , 128, 194706	3.9	35
219	Super-exchange-induced high performance charge transport in donor\(\text{Bcceptor copolymers}\). Journal of Materials Chemistry C, 2017 , 5, 3247-3253	7.1	34
218	Electronic properties and charge carrier mobilities of graphynes and graphdiynes from first principles. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 215-227	7.9	34
217	Linear and nonlinear optical response of polyenes: A density matrix renormalization group study. Journal of Chemical Physics, 1998 , 109, 2549-2555	3.9	34
216	Electro-optic response of chiral helicenes in isotropic media. <i>Journal of Chemical Physics</i> , 1998 , 108, 13	013.1330	4 33
215	Theoretical insights into the charge transport in perylene diimides based n-type organic semiconductors. <i>Organic Electronics</i> , 2012 , 13, 2763-2772	3.5	29
214	Field Effect on the Singlet and Triplet Exciton Formation in Organic/Polymeric Light-Emitting Diodes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9608-9613	3.4	29
213	The density matrix renormalization group method: Application to the low-lying electronic states in conjugated polymers. <i>Advances in Quantum Chemistry</i> , 2000 , 38, 121-215	1.4	29
212	Molecular mechanism of aggregation-induced emission. <i>Aggregate</i> ,e91	22.9	29
211	Spectroscopic Study of Electron and Hole Polarons in a High-Mobility DonorAcceptor Conjugated Copolymer. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6835-6841	3.8	28
21 0	Influences of molecular packing on the charge mobility of organic semiconductors: from quantum charge transfer rate theory beyond the first-order perturbation. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9736-46	3.6	28
209	Discontinuity effect on the phonon transmission and thermal conductance in a dielectric quantum waveguide. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2005 , 336, 245-252	2.3	28

(2015-2017)

208	Doping optimization of organic-inorganic hybrid perovskite CH3NH3Pbl3 for high thermoelectric efficiency. <i>Synthetic Metals</i> , 2017 , 225, 108-114	3.6	27	
207	Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 13349-54	2.8	27	
206	Nonlinear optical properties of nitro-aniline and methyl-aniline compounds han exact correction vector INDO-SDCI study. <i>Chemical Physics Letters</i> , 1996 , 250, 14-18	2.5	27	
205	Computational screen-out strategy for electrically pumped organic laser materials. <i>Nature Communications</i> , 2020 , 11, 4485	17.4	27	
204	Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6631-6640	3.8	26	
203	Influences of Conjugation Extent on the Aggregation-Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 2154-61	4.5	26	
202	First-principle band structure calculations of tris(8-hydroxyquinolinato)aluminum. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3180-4	3.4	26	
201	Critical exponents of the two-layer Ising model. <i>Journal of Physics A</i> , 2001 , 34, 6069-6079		26	
200	Toward Achieving Single-Molecule White Electroluminescence from Dual Emission of Fluorescence and Phosphorescence. <i>Chemistry of Materials</i> , 2020 , 32, 4038-4044	9.6	26	
199	Role of the Dark 2A State in Donor-Acceptor Copolymers as a Pathway for Singlet Fission: A DMRG Study. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2175-2181	6.4	25	
198	Understanding Lattice Strain-Controlled Charge Transport in Organic Semiconductors: A Computational Study. <i>Advanced Functional Materials</i> , 2014 , 24, 5531-5540	15.6	25	
197	Asymmetrical fluorene[2,3-b]benzo[d]thiophene derivatives: synthesis, solid-state structures, and application in solution-processable organic light-emitting diodes. <i>Chemistry - A European Journal</i> , 2009 , 15, 8275-82	4.8	25	
196	Magnetic dipole and electric quadrupole contributions to second-harmonic generation in C60A valence effective hamiltonian study. <i>Advanced Materials</i> , 1994 , 6, 486-488	24	25	
195	Toward Quantitative Prediction of Fluorescence Quantum Efficiency by Combining Direct Vibrational Conversion and Surface Crossing: BODIPYs as an Example. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7790-7797	6.4	25	
194	Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21677-21682	16.4	25	
193	High-Performance Organic Thermoelectric Materials: Theoretical Insights and Computational Design. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800882	6.4	24	
192	Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2267-73	6.4	24	
191	Synergistic Photomodulation of Capacitive Coupling and Charge Separation Toward Functional Organic Field-Effect Transistors with High Responsivity. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500159	6.4	24	

190	Thiazolothiazole-containing polythiophenes with low HOMO level and high hole mobility for polymer solar cells. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 4875-4885	2.5	24
189	Electronic structure of pyridine-based SAMs on flat Au(111) surfaces: extended charge rearrangements and Fermi level pinning. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9747-60	3.6	24
188	Strong Solid-State Fluorescence Induced by Restriction of the Coordinate Bond Bending in Two-Coordinate Copper(I)-Carbene Complexes. <i>Inorganic Chemistry</i> , 2019 , 58, 14403-14409	5.1	22
187	Enhancement of the p-channel performance of sulfur-bridged annulene through a donor ceptor co-crystal approach. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8886-8891	7.1	22
186	Dicyanovinyl heterotetracenes: synthesis, solid-state structures, and photophysical properties. Journal of Organic Chemistry, 2009 , 74, 7322-7	4.2	22
185	Coupling effect on the electronic transport through dimolecular junctions. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2007 , 365, 489-494	2.3	22
184	Understanding Carrier Transport in Organic Semiconductors: Computation of Charge Mobility Considering Quantum Nuclear Tunneling and Delocalization Effects. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 1477-1491	6.4	22
183	Excitonic coupling effect on the nonradiative decay rate in molecular aggregates: Formalism and application. <i>Chemical Physics Letters</i> , 2017 , 683, 507-514	2.5	21
182	Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes. Journal of Chemical Physics, 2020 , 152, 024127	3.9	21
181	Rubrene analogues with the aggregation-induced emission enhancement behaviour. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 884-890	7.1	21
180	Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly. <i>Nanoscale</i> , 2013 , 5, 3681-9	7.7	21
179	SSH-Hamiltonian description of the electronic structure and vibrational properties of polyparaphenylene vinylene. <i>Solid State Communications</i> , 1991 , 78, 477-480	1.6	21
178	Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond. <i>Journal of Chemical Physics</i> , 2020 , 153, 080902	3.9	21
177	Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 14024-14030	3.6	20
176	Superexchange Induced Charge Transport in Organic Donor Acceptor Cocrystals and Copolymers: A Theoretical Perspective. <i>Chemistry of Materials</i> , 2019 , 31, 6424-6434	9.6	20
175	Dendritic BIPHEP: Synthesis and application in asymmetric hydrogenation of 眼etoesters. <i>Journal of Molecular Catalysis A</i> , 2006 , 244, 118-123		20
174	Optical properties of singly charged conjugated oligomers: a coupled-cluster equation of motion study. <i>Journal of Chemical Physics</i> , 2004 , 121, 5567-78	3.9	20
173	Exciton binding energy in the strong correlation limit of conjugated chains. <i>Physical Review B</i> , 1998 , 58, 15329-15332	3.3	20

172	Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates. <i>Acta Chimica Sinica</i> , 2016 , 74, 902	3.3	20	
171	Pressure-induced emission enhancement in hexaphenylsilole: a computational study. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1388-1398	7.1	19	
170	A conjugated polymer based on 5,5?-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3432		19	
169	EXCITON BINDING ENERGY OF ELECTRONIC POLYMERS: A FIRST PRINCIPLES STUDY. <i>Journal of Theoretical and Computational Chemistry</i> , 2008 , 07, 517-530	1.8	19	
168	Structure to property relationships for multiphoton absorption in covalently linked porphyrin dimers: a correction vector INDO/MRDCI study. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 8509-18	2.8	19	
167	Solid supramolecular architecture of a perylene diimide derivative for fluorescent enhancement. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 2904-11	4.5	18	
166	Theoretical predictions of red and near-infrared strongly emitting X-annulated rylenes. <i>Journal of Chemical Physics</i> , 2011 , 134, 074510	3.9	18	
165	Chiral molecular switches based on binaphthalene molecules with anthracene moieties: CD signal due to interchromophoric exciton coupling and modulation of the CD spectrum. <i>Journal of Organic Chemistry</i> , 2007 , 72, 4306-12	4.2	18	
164	Theoretical investigation of the effect of doping on the electronic properties of polyparaphenylene vinylene. <i>Synthetic Metals</i> , 1991 , 43, 3743-3746	3.6	18	
163	Theoretical Investigations on the Roles of Intramolecular Structure Distortion versus Irregular Intermolecular Packing in Optical Spectra of 6T Nanoparticles. <i>Chemistry of Materials</i> , 2017 , 29, 2513-25	20 ⁶	17	
162	Negative isotope effect for charge transport in acenes and derivativesa theoretical conclusion. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3273-80	3.6	17	
161	Device simulation of low-band gap polymer solar cells: Influence of electron-hole pair dissociation and decay rates on open-circuit voltage. <i>Applied Physics Letters</i> , 2010 , 97, 143511	3.4	17	
160	Effects of size constraint on water filling process in nanotube. <i>Journal of Chemical Physics</i> , 2008 , 128, 134703	3.9	17	
159	New heterocyclic tetrathiafulvalene compounds with an azobenzene moiety: photomodulation of the electron-donating ability of the tetrathiafulvalene moiety. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6247-50	4.2	17	
158	Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores. <i>Journal of Chemical Physics</i> , 2006 , 125, 44101	3.9	17	
157	LATTICE THERMAL CONDUCTIVITY IN A HOLLOW SILICON NANOWIRE. <i>International Journal of Modern Physics B</i> , 2005 , 19, 1017-1027	1.1	17	
156	A Blicked[porphyrin cage with high binding affinity towards fullerenes. RSC Advances, 2014, 4, 27389-273	3 9.7	16	
155	Amidourea-based hydrogen-bonded heteroduplexes: structure and assembling selectivity. <i>Journal of Organic Chemistry</i> , 2012 , 77, 7815-22	4.2	16	

154	Local configuration interaction single excitation approach: Application to singlet and triplet excited states structure for conjugated chains. <i>Synthetic Metals</i> , 2008 , 158, 330-335	3.6	16
153	Efficient blue electroluminescent device using tetra(#haphthyl)silane as a hole-blocking material. <i>Applied Physics Letters</i> , 2005 , 87, 222115	3.4	16
152	Simultaneously and Selectively Imaging a Cytoplasm Membrane and Mitochondria Using a Dual-Colored Aggregation-Induced Emission Probe. <i>Analytical Chemistry</i> , 2020 , 92, 14494-14500	7.8	16
151	Inner Space Perturbation Theory in Matrix Product States: Replacing Expensive Iterative Diagonalization. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 4871-4878	6.4	16
150	Theoretical study of the low-lying electronic excited states for molecular aggregates. <i>Science China Chemistry</i> , 2013 , 56, 1258-1262	7.9	15
149	Nonperturbative time-convolutionless quantum master equation from the path integral approach. <i>Journal of Chemical Physics</i> , 2009 , 130, 134106	3.9	15
148	Electron correlation effects on the nonlinear optical properties of conjugated polyenes. <i>Chemical Physics Letters</i> , 2008 , 457, 276-278	2.5	15
147	Energy transfer in Etonjugated polymers: Interchain vs. intrachain processes in polyindenofluorene. <i>Synthetic Metals</i> , 2003 , 137, 1369-1371	3.6	15
146	On the luminescence efficiency of polymer light-emitting diodes: a quantum-chemical investigation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 144, 57-62	4.7	15
145	Relaxation of the first Bu excited state in linear polyenes: From trans-butadiene to polyacetylene. <i>Journal of Chemical Physics</i> , 1992 , 97, 5970-5976	3.9	15
144	Effect of donor length on electronic structures and charge transport polarity for DTDPP-based DA copolymers: a computational study based on a super-exchange model. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11985-11993	13	15
143	Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21918-21926	16.4	15
142	Theoretical and Experimental Investigations on the Aggregation-Enhanced Emission from Dark State: Vibronic Coupling Effect. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000255	6.4	14
141	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin-Orbit Coupling with Incorporation of a Secondary Group. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7141-7147	6.4	14
140	Substitution effects on the electrical transporting properties of tetrathia[22]annulene[2,1,2,1]: experimental and theoretical investigations. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5765	7.1	14
139	From electronic excited state theory to the property predictions of organic optoelectronic materials. <i>Science China Chemistry</i> , 2013 , 56, 1277-1284	7.9	14
138	The dominant one- and two-photon excited states in the nonlinear optical response of octatetraene: ab initio versus semiempirical theoretical descriptions. <i>Chemical Physics Letters</i> , 1997 , 279, 1-8	2.5	14
137	From molecular states to band structure: Theoretical investigation of momentum dependent excitations in phenylene based organic materials. <i>Journal of Chemical Physics</i> , 1999 , 111, 1668-1675	3.9	14

(2021-2021)

136	Theoretical Characterizations of TADF Materials: Roles of Land the Singlet-Triplet Excited States Interconversion. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 1468-1475	2.8	14	
135	Finite-Temperature TD-DMRG for the Carrier Mobility of Organic Semiconductors. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4930-4936	6.4	13	
134	Stretching single polymer chains of donor-acceptor foldamers: toward the quantitative study on the extent of folding. <i>Langmuir</i> , 2013 , 29, 14438-43	4	13	
133	UV photocurrent spectroscopy in poly(p-phenylene vinylene) and derivatives. <i>Synthetic Metals</i> , 1997 , 84, 675-676	3.6	13	
132	Spontaneously aggregated chiral nanostructures from achiral tripod-terpyridine. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8063-8	3.4	13	
131	Effects of donor/acceptor strengths on the multiphoton absorption: an EOM-CCSD correction vector study. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 9291-8	2.8	13	
130	Photoelectrical Characteristics of a C/CNx Multiwalled Nanotube. <i>Advanced Functional Materials</i> , 2007 , 17, 2842-2846	15.6	13	
129	Theoretical Designs of Molecular Photonics Materials. <i>Macromolecular Theory and Simulations</i> , 2008 , 17, 12-22	1.5	13	
128	Local approach to coupled cluster evaluation of polarizabilities for long conjugated molecules. <i>Journal of Computational Chemistry</i> , 2008 , 29, 1650-5	3.5	13	
127	Three-photon absorption in anthracene-porphyrin-anthracene triads: a quantum-chemical study. <i>Journal of Chemical Physics</i> , 2004 , 121, 11060-7	3.9	13	
126	Bound states trapped by the soliton in the Su-Schrieffer-Heeger model. <i>Physical Review B</i> , 1988 , 38, 62	98 . 630	013	
125	Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2018 , 34, 961-976	3.8	13	
124	Elucidating the Electronic Structure of a Delayed Fluorescence Emitter via Orbital Interactions, Excitation Energy Components, Charge-Transfer Numbers, and Vibrational Reorganization Energies. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2712-2720	6.4	13	
123	Finite Temperature Dynamical Density Matrix Renormalization Group for Spectroscopy in Frequency Domain. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3761-3768	6.4	12	
122	Radical self-assembled monolayers on Au(111) formed by the adsorption of closed-shell molecules. Journal of Materials Chemistry, 2012 , 22, 4269		12	
121	Anion-binding properties of Electron deficient cavities in bis(tetraoxacalix[2]arene[2]triazine): a theoretical study. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 3844-51	2.8	12	
120	Quantum confinement effects on the ordering of the lowest-lying excited states in conjugated polymers 1997 , 3145, 293		12	
119	Aggregation-Enhanced Thermally Activated Delayed Fluorescence Efficiency for Two-Coordinate Carbene-Metal-Amide Complexes: A QM/MM Study. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 294	14646	, 12	

118	Reducing Lattice Thermal Conductivity of the Thermoelectric SnSe Monolayer: Role of PhononElectron Coupling. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 12001-12006	3.8	11
117	The role of the no 1A(u) state in the photoabsorption and relaxation of pyrazine. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2977-85	4.5	11
116	Synthesis and third-order optical nonlinearities of nickel complexes of 8-hydroxyquinoline derivatives. <i>Optics Communications</i> , 2010 , 283, 2228-2233	2	11
115	Charge-Transport Behavior in Aligned Carbon Nanotubes: A Quantum-Chemical Investigation. <i>Advanced Functional Materials</i> , 2004 , 14, 289-295	15.6	11
114	A novel molecular descriptor for highly efficient (?TADF > 90%) transition metal TADF Au(III) complexes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18721-18725	13	11
113	Roles of Long-Range Hopping, Quantum Nuclear Effect, and Exciton Delocalization in Exciton Transport in Organic Semiconductors: A Multiscale Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 18365-18375	3.8	10
112	The correction vector method for three-photon absorption: the effects of pi conjugation in extended rylenebis(dicarboximide)s. <i>Journal of Chemical Physics</i> , 2006 , 125, 164505	3.9	10
111	Charge-transfer states and white emission in organic light-emitting diodes: a theoretical investigation. <i>Synthetic Metals</i> , 2004 , 141, 43-49	3.6	10
110	Theoretical investigation on the one- and two-photon absorption properties of a series of porphyrazines with annulated 1,2,5-thiadiazole and 1,4-dimethyloxybenzene moieties. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2005 , 172, 126-134	4.7	10
109	Electron interaction and optical gap of conjugated polymers. <i>Physical Review B</i> , 1991 , 44, 11042-11047	3.3	10
108	Vibration Correlation Function Investigation on the Phosphorescence Quantum Efficiency and Spectrum for Blue Phosphorescent Ir(III) Complex. <i>Acta Chimica Sinica</i> , 2013 , 71, 884	3.3	10
107	Boosting the Seebeck Coefficient for Organic Coordination Polymers: Role of Doping-Induced Polaron Band Formation. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2493-2499	6.4	9
106	DMRG studies of the IB exciton binding energy and 1B/2A crossover in an extended Hubbard-Peierls model. <i>Synthetic Metals</i> , 1997 , 85, 1011-1014	3.6	9
105	Structural and magnetic studies of quinoline and N-methyl quinolinium-substituted nitronyl nitroxides. <i>Synthetic Metals</i> , 2003 , 139, 479-483	3.6	9
104	Electronic structure and nonlinear optical properties of fullerenes. Synthetic Metals, 1993, 56, 2973-297	'8 3.6	9
103	Sunlight-coordinated high-performance Moisture Power in Natural Condition <i>Advanced Materials</i> , 2021 , e2103897	24	9
102	A general automatic method for optimal construction of matrix product operators using bipartite graph theory. <i>Journal of Chemical Physics</i> , 2020 , 153, 084118	3.9	9
101	A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. <i>Nature Communications</i> , 2021 , 12, 4260	17.4	9

100	Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor-acceptor interfacial arrangements. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 24570-24576	3.6	9
99	Advancing conjugated polymers into nanometer-scale devices. <i>Pure and Applied Chemistry</i> , 2006 , 78, 1803-1822	2.1	8
98	Exciton coupling in oligothiophenes: A combined experimental/theoretical study. <i>Synthetic Metals</i> , 1999 , 102, 912-913	3.6	8
97	Electronic structure of conducting polymers with nonconjugated backbones: 1,4-polybutadiene and 1,4-polyisoprene. <i>Macromolecules</i> , 1991 , 24, 3723-3724	5.5	8
96	Supramolecular engineering of charge transfer in wide bandgap organic semiconductors with enhanced visible-to-NIR photoresponse. <i>Nature Communications</i> , 2021 , 12, 3667	17.4	8
95	Ferroelectricity in 2D metal phosphorus trichalcogenides and van der Waals heterostructures for photocatalytic water splitting. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2734-2741	13	8
94	High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering. <i>Journal of Computational Chemistry</i> , 2018 , 39, 2582-2588	3.5	8
93	Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. Journal of Chemical Physics, 2021 , 155, 064107	3.9	8
92	Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2014 , 372, 20130018	3	7
91	Deformation Potential Theory. Springer Briefs in Molecular Science, 2012, 67-88	0.6	7
90	THEORETICAL DESIGN OF LIGHT-EMITTING POLYMERS (\$UBSTITUTION EFFECTS OF EXCITED STATE ORDERING OF POLYDIACETYLENE AND POLYACETYLENE. <i>Journal of Theoretical and Computational Chemistry</i> , 2006 , 05, 391-400	1.8	7
89	Influence of the coupling between the normal and lateral motions on surface states of a semi-infinite superlattice with a cap layer. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 325, 70-78	2.3	7
88	The quasi-band-structure description of conjugated oligomers. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 1753-1768	1.8	7
87	First-principles calculation of bulk susceptibility for second-harmonic generation in crystalline C60. Journal of Chemical Physics, 1998 , 108, 5975-5980	3.9	7
86	Evaluating the anharmonicity contributions to the molecular excited state internal conversion rates with finite temperature TD-DMRG. <i>Journal of Chemical Physics</i> , 2021 , 154, 214109	3.9	7
85	Long Persistent Luminescence Enabled by Dissociation of Triplet Intermediate States in an Organic Guest/Host System. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3582-3588	6.4	7
84	Computational Study on the Charge Transport and Optical Spectra of Anthracene Derivatives in Aggregates. <i>ChemPhysChem</i> , 2020 , 21, 952-957	3.2	6
83	Assessment of theoretical methods for the study of hydrogen abstraction kinetics of global warming gas species during their degradation and byproduct formation (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2013 , 85, 1901-1918	2.1	6

82	The evolution of the localized interface optical-phonon modes in a finite superlattice with a structural defect. <i>Semiconductor Science and Technology</i> , 2005 , 20, 1027-1033	1.8	6
81	Polaron-pair binding due to interchain coupling in conjugated polymers. <i>Physical Review B</i> , 1995 , 52, 13730-13733	3.3	6
80	Modeling of nonlinear optic and ESR response of CDW MX Materials. Synthetic Metals, 1995, 71, 1659-1	6 6 8	6
79	Influence of molecular architecture and chain length on the nonlinear optical response of conjugated oligomers and polymers. <i>Synthetic Metals</i> , 1993 , 57, 3933-3940	3.6	6
78	Theoretical Investigation of the Magnetic Dipole and Electric Quadrupole Contributions to the Second-Harmonic Generation in C60 and C70. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 801-806		6
77	Theoretical study on the aggregation induced emission. <i>Scientia Sinica Chimica</i> , 2013 , 43, 1078-1089	1.6	6
76	Spectral Signature of Intrachain and Interchain Polarons in Donor-Acceptor Copolymers. <i>Acta Chimica Sinica</i> , 2014 , 72, 201	3.3	6
75	High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20274-20279	16.4	6
74	Theoretical Modeling of the Optical and Electrical Processes in Polymeric Solar Cells. <i>Topics in Applied Physics</i> , 2015 , 101-142	0.5	5
73	Effects of charge distribution on water filling process in carbon nanotube. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 137-143		5
72	First-principles electronic structure of light-emitting and transport materials: Zinc(II)2-(2-hydroxyphenyl)benzothiazolate. <i>Synthetic Metals</i> , 2006 , 156, 1287-1291	3.6	5
71	Singlet and triplet exciton formation rates in conjugated polymer LEDs. Synthetic Metals, 2001, 121, 163	3 7: 463	85
70	The spectrum of third-order nonlinear susceptibility of trans-polyacetylene. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 9713-9716	1.8	5
69	Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H-Aggregates. <i>Nano Letters</i> , 2021 , 21, 5394-5400	11.5	5
68	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. <i>Angewandte Chemie</i> , 2016 , 128, 5292-5295	3.6	5
67	A computational scheme for evaluating the phosphorescence quantum efficiency: applied to blue-emitting tetradentate Pt(II) complexes. <i>Materials Horizons</i> , 2021 ,	14.4	5
66	Waterchromism of protonated photomerocyanine dye. <i>Dyes and Pigments</i> , 2008 , 76, 264-269	4.6	4
65	Coupled-cluster approach for studying the optical properties of charged Econjugated oligomers. <i>Synthetic Metals</i> , 2003 , 137, 1077-1078	3.6	4

(2021-2005)

64	White organic light-emitting devices using Zn(BTZ)2 doped with Rubrene as emitting layer. <i>Science Bulletin</i> , 2005 , 50, 509-513		4
63	COUPLED-CLUSTER EQUATION OF MOTION STUDY FOR THE ELECTRONIC AND OPTICAL PROPERTIES OF CONJUGATED SYSTEMS. <i>Journal of Theoretical and Computational Chemistry</i> , 2005 , 04, 603-622	1.8	4
62	Theoretical evolution of the third-order molecular polarizabilities as a function of chain length in thiophene and pyrrole oligomers. <i>International Journal of Quantum Chemistry</i> , 1994 , 52, 39-48	2.1	4
61	Understanding the Temperature Dependence of the Seebeck Coefficient from First-Principles Band Structure Calculations for Organic Thermoelectric Materials. <i>CCS Chemistry</i> ,1477-1483	7.2	4
60	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. <i>Chemistry of Materials</i> , 2021 , 33, 4578-4585	9.6	4
59	Molecular Design Strategy for Simultaneously Strong Luminescence and High Mobility: Multichannel CH-Interaction. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 938-946	6.4	4
58	Intermolecular charge-transfer aggregates enable high-efficiency near-infrared emissions by nonadiabatic coupling suppression. <i>Science China Chemistry</i> , 2021 , 64, 1786	7.9	4
57	Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal. <i>Science China Chemistry</i> , 2017 , 60, 275-283	7.9	3
56	Hopping Mechanism. Springer Briefs in Molecular Science, 2012, 7-41	0.6	3
55	Localized electronic states in -layer-based superlattices with structural defects. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 28, 374-384	3	3
54	Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers. <i>Physical Review B</i> , 2000 , 61, 16561-16569	3.3	3
54		3.3	3
	oligomers. <i>Physical Review B</i> , 2000 , 61, 16561-16569 Electroabsorption in poly(paraphenylene vinylene) and PtI: Exciton vs band descriptions. <i>Solid State</i>		
53	oligomers. <i>Physical Review B</i> , 2000 , 61, 16561-16569 Electroabsorption in poly(paraphenylene vinylene) and PtI: Exciton vs band descriptions. <i>Solid State Communications</i> , 1996 , 97, 1063-1067 Computational Selection of Thermally Activated Delayed Fluorescence (TADF) Molecules with		3
53 52	oligomers. Physical Review B, 2000, 61, 16561-16569 Electroabsorption in poly(paraphenylene vinylene) and Ptl: Exciton vs band descriptions. Solid State Communications, 1996, 97, 1063-1067 Computational Selection of Thermally Activated Delayed Fluorescence (TADF) Molecules with Promising Electrically Pumped Lasing Property487-496 Time-dependent density matrix renormalization group coupled with n-mode representation potentials for the excited state radiationless decay rate: Formalism and application to azulene[]	1.6	3 3
53 52 51	oligomers. Physical Review B, 2000, 61, 16561-16569 Electroabsorption in poly(paraphenylene vinylene) and PtI: Exciton vs band descriptions. Solid State Communications, 1996, 97, 1063-1067 Computational Selection of Thermally Activated Delayed Fluorescence (TADF) Molecules with Promising Electrically Pumped Lasing Property487-496 Time-dependent density matrix renormalization group coupled with n-mode representation potentials for the excited state radiationless decay rate: Formalism and application to azulenell Chinese Journal of Chemical Physics, 2021, 34, 565-582 Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. Journal of the	0.9	3 3 3
53 52 51 50	Electroabsorption in poly(paraphenylene vinylene) and PtI: Exciton vs band descriptions. <i>Solid State Communications</i> , 1996 , 97, 1063-1067 Computational Selection of Thermally Activated Delayed Fluorescence (TADF) Molecules with Promising Electrically Pumped Lasing Property487-496 Time-dependent density matrix renormalization group coupled with n-mode representation potentials for the excited state radiationless decay rate: Formalism and application to azulenell <i>Chinese Journal of Chemical Physics</i> , 2021 , 34, 565-582 Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. <i>Journal of the American Chemical Society</i> , 2021 , 143, 20192-20201 Heavy-Atom-Free Room-Temperature Phosphorescent Rylene Imide for High-Performing Organic	0.9	3 3 3

46	A Novel Strategy toward Thermally Activated Delayed Fluorescence from a Locally Excited State Journal of Physical Chemistry Letters, 2022, 2653-2660	6.4	3
45	Synthesis and Characterization of N,N?-Substituted 15,15,16,16-Tetracyano-6,13-pentacenequinodimethane-2,3,9,10-tetracarboxylic Diimide Derivatives. <i>Asian Journal of Organic Chemistry</i> , 2013 , 2, 220-224	3	2
44	Theoretical Understanding of AIE Phenomena Through Computational Chemistry 2013, 357-398		2
43	Nonlinear optical response of MX chains in a one-band extended Peierls-Hubbard model. <i>Synthetic Metals</i> , 1997 , 86, 2231-2232	3.6	2
42	Multiphoton Absorption in Expanded Porphyrins. <i>Acta Physico-chimica Sinica</i> , 2008 , 24, 565-570		2
41	Theoretically Rational Designs of Transport Organic Semiconductors Based on Heteroacenes. <i>Chinese Journal of Chemistry</i> , 2008 , 26, 1005-1010	4.9	2
40	A theoretical insight into the solid-state optical properties of luminescent materials: the supermolecular approach. <i>Comptes Rendus Physique</i> , 2000 , 1, 403-408		2
39	Effect of nonadiabaticity and disorder on nonlinear optical susceptibilities. <i>Physical Review B</i> , 1999 , 59, 1697-1700	3.3	2
38	Momentum dependent excitation processes in organic materials. Synthetic Metals, 1999, 101, 337-338	3.6	2
37	Photoexcitations in Poly(Paraphenylene Vinylene). <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 525	5-530	2
36	Nonlinear optical processes in conjugated polymers: configuration interaction description of linear polyenes and VEH/SOS evaluation of polyarylene vinylenes. <i>Synthetic Metals</i> , 1992 , 51, 123-133	3.6	2
35	Static and dynamic third-order susceptibilities in conjugated polymers: Hākel theory and VEH approach. <i>Synthetic Metals</i> , 1992 , 49, 37-48	3.6	2
34	Is a conjugated polymer a Mott or a Peierls insulator?. Synthetic Metals, 1991, 43, 3549-3552	3.6	2
33	Electron interaction in conducting polymers and its effect on dimerization. <i>Synthetic Metals</i> , 1988 , 27, A1-A8	3.6	2
32	Computational methodologies for the electronic excited states structure and processes for organic optoelectronic materials. <i>Scientia Sinica Chimica</i> , 2013 , 43, 1654-1668	1.6	2
31	Comparative study on the methodologies for calculating the excited state in DMRG. <i>Scientia Sinica Chimica</i> , 2015 , 45, 1316-1324	1.6	2
30	Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton-Photon Coupling. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17786-17792	16.4	2
29	Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing. <i>Angewandte Chemie</i> , 2020 , 132, 21861-21866	3.6	2

28	Intrinsic hydroquinone-functionalized aggregation-induced emission core shows redox and pH sensitivity. <i>Communications Chemistry</i> , 2021 , 4,	6.3	2
27	Theoretical Insights into the Mechanism of AIE. ACS Symposium Series, 2016, 35-59	0.4	2
26	Chebyshev Matrix Product States with Canonical Orthogonalization for Spectral Functions of Many-Body Systems. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9344-9352	6.4	2
25	Time-dependent density matrix renormalization group method for quantum dynamics in complex systems. Wiley Interdisciplinary Reviews: Computational Molecular Science,	7.9	2
24	The isotope effect on charge transport for bithiophene and di(n-hexyl)-bithiophene: impacts of deuteration position, deuteration number and side chain substitution position. <i>Theoretical Chemistry Accounts</i> , 2018 , 137, 1	1.9	1
23	First-principles investigations on the anisotropic charge transport in 4,4?-bis((E)-2-(naphthalen-2-yl)vinyl)-1,1?-biphenyl single crystal. <i>Theoretical Chemistry Accounts</i> , 2014 , 133, 1	1.9	1
22	Lattice relaxation in linear polyenes. Synthetic Metals, 1993, 57, 4479-4484	3.6	1
21	Influence of electron-electron interaction on the vibrational frequency in one-dimensional dimerized conjugated systems. <i>Physical Review B</i> , 1993 , 47, 13260-13265	3.3	1
20	Theoretical insights into molecular blending on charge transport properties in organic semiconductors based on quantum nuclear tunneling model. <i>Journal of Photonics for Energy</i> , 2018 , 8, 1	1.2	1
19	Emerging technologies for a more sustainable future. Pure and Applied Chemistry, 2021,	2.1	1
18	Simultaneous studies of pressure effect on charge transport and photophysical properties in organic semiconductors: A theoretical investigation. <i>Chinese Chemical Letters</i> , 2021 , 32, 1233-1236	8.1	1
17	Abnormal Seebeck effect in doped conducting polymers. <i>Applied Physics Letters</i> , 2021 , 118, 123301	3.4	1
16	Future directions of chemical theory and computation. Pure and Applied Chemistry, 2021,	2.1	1
15	High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. <i>Angewandte Chemie</i> , 2021 , 133, 20436-20441	3.6	1
14	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy 1998 , 10, 134	13	1
13	Festschrift in Honor of Prof. Jean-Luc Brdas on His 65th Birthday. Chemistry of Materials, 2019 , 31, 630	7 -63 08	8 0
12	Catechol Moiety Integrated Tri-Aryl Type AlEgen for Visual and Quantitative Boronic Acid Detection. <i>Chemistry - A European Journal</i> , 2021 , 28, e202103351	4.8	O
11	Mechanism of charge transport in organic semiconductors and carbon nanomaterials. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1733, 1		

10	Charge Transport: Understanding Lattice Strain-Controlled Charge Transport in Organic Semiconductors: A Computational Study (Adv. Funct. Mater. 35/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 5530-5530	15.6
9	Chemical Sciences: Contributions to Building a Sustainable Society and Sharing of International Responsibilities. <i>ACS Symposium Series</i> , 2014 , 101-139	0.4
8	Theoretical study on self-assembly in organic materials. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2010 , 5, 2-10	
7	Theoretical study of inelastic X-ray scattering spectra for organic materials: Molecular excitation coupled with molecular exciton descriptions. <i>Synthetic Metals</i> , 2007 , 157, 670-677	3.6
6	Theoretical Investigation of the Spin-dependent Exciton Formation Rates in Polymeric Light-emitting Diodes. <i>Journal of the Chinese Chemical Society</i> , 2003 , 50, 691-702	1.5
5	Dynamics and Role of Nonadiabatic Effects on Nonlinear Optical Response of Conjugated Polymers. <i>Synthetic Metals</i> , 1999 , 101, 257-258	3.6
4	Two-band model description of electroabsorption and third-harmonic generation in 1-D MX linear chains. <i>Synthetic Metals</i> , 1995 , 71, 1685-1686	3.6
3	AlEgens with cyano-modification in different sites: Potential Meta-site effect[In mechanochromism behavior. <i>Dyes and Pigments</i> , 2021 , 198, 109939	4.6
2	Front Cover: Molecular mechanism of aggregation-induced emission. <i>Aggregate</i> , 2021 , 2, e134	22.9
1	Computational modeling of AIE luminogens 2022 , 639-667	