Adrian Whitehouse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9032328/publications.pdf

Version: 2024-02-01

104 papers 2,867 citations

32 h-index 242451 47 g-index

112 all docs

 $\begin{array}{c} 112 \\ \text{docs citations} \end{array}$

112 times ranked

2870 citing authors

#	Article	IF	CITATIONS
1	Dysregulation of the miRâ€30c/DLL4 axis by circHIPK3 is essential for KSHV lytic replication. EMBO Reports, 2022, 23, e54117.	2.0	9
2	Investigating the structural changes due to adenosine methylation of the Kaposi's sarcoma-associated herpes virus ORF50 transcript. PLoS Computational Biology, 2022, 18, e1010150.	1.5	8
3	TMEM16A/ANO1 calcium-activated chloride channel as a novel target for the treatment of human respiratory syncytial virus infection. Thorax, 2021, 76, 64-72.	2.7	13
4	Cytoplasmic long noncoding RNAs are differentially regulated and translated during human neuronal differentiation. Rna, 2021, 27, 1082-1101.	1.6	17
5	Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers, 2021, 13, 4180.	1.7	17
6	Merkel Cell Polyomavirus Small Tumor Antigen Activates Matrix Metallopeptidase-9 Gene Expression for Cell Migration and Invasion. Journal of Virology, 2020, 94, .	1.5	8
7	Regulation of Kaposi's Sarcoma-Associated Herpesvirus Biology by Host Molecular Chaperones. Heat Shock Proteins, 2020, , 167-196.	0.2	O
8	Identification of potassium and calcium channel inhibitors as modulators of polyomavirus endosomal trafficking. Antiviral Research, 2020, 179, 104819.	1.9	19
9	MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathogens, 2020, 16, e1008624.	2.1	46
10	Merkel cell polyomavirus small tumour antigen activates the p38 MAPK pathway to enhance cellular motility. Biochemical Journal, 2020, 477, 2721-2733.	1.7	10
11	Styrene maleic acid recovers proteins from mammalian cells and tissues while avoiding significant cell death. Scientific Reports, 2019, 9, 16408.	1.6	3
12	m6A: Widespread regulatory control in virus replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 370-381.	0.9	37
13	CircRNAs: From anonymity to novel regulators of gene expression in cancer (Review). International Journal of Oncology, 2019, 55, 1183-1193.	1.4	16
14	The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. ELife, 2019, 8, .	2.8	107
15	The cellular chloride channels CLIC1 and CLIC4 contribute to virus-mediated cell motility. Journal of Biological Chemistry, 2018, 293, 4582-4590.	1.6	21
16	Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation. Journal of Virology, 2018, 92, .	1.5	22
17	Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Current Opinion in Virology, 2018, 32, 60-70.	2.6	7 5
18	Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathogens, 2018, 14, e1007276.	2.1	24

#	Article	IF	CITATIONS
19	The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of Kaposi's sarcoma-associated herpesvirus (KSHV) and interacts with the KSHV ORF20 protein. PLoS Pathogens, 2018, 14, e1006937.	2.1	28
20	m6aViewer: software for the detection, analysis, and visualization of $\langle i \rangle N < i \rangle < sup > 6 < sup \rangle + methyladenosine peaks from m < sup > 6 < sup \ A - seq ME-RIP sequencing data. Rna, 2017, 23, 1493-1501.$	1.6	34
21	Generation of specific inhibitors of SUMO-1– and SUMO-2/3–mediated protein-protein interactions using Affimer (Adhiron) technology. Science Signaling, 2017, 10, .	1.6	44
22	Targeting the human TREX complex to prevent herpesvirus replication: what is new?. Future Virology, 2017, 12, 81-83.	0.9	2
23	Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nature Microbiology, 2017, 2, 16201.	5. 9	38
24	The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen. Oncotarget, 2017, 8, 25418-25432.	0.8	32
25	ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle. Journal of Virology, 2016, 90, 9543-9555.	1.5	10
26	Interactions between KSHV ORF57 and the novel human TREX proteins, CHTOP and CIP29. Journal of General Virology, 2016, 97, 1904-1910.	1.3	8
27	Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments. PLoS Pathogens, 2015, 11, e1005274.	2.1	59
28	Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology. Veterinary Microbiology, 2015, 176, 109-119.	0.8	26
29	NEDDylation Is Essential for Kaposi's Sarcoma-Associated Herpesvirus Latency and Lytic Reactivation and Represents a Novel Anti-KSHV Target. PLoS Pathogens, 2015, 11, e1004771.	2.1	43
30	Merkel Cell Polyomavirus Small T Antigen Mediates Microtubule Destabilization To Promote Cell Motility and Migration. Journal of Virology, 2015, 89, 35-47.	1.5	56
31	Stathmin drives virus-induced metastasis. Oncotarget, 2015, 6, 32289-32290.	0.8	4
32	Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Molecular and Clinical Oncology, 2014, 2, 891-903.	0.4	6
33	A Novel Mechanism Inducing Genome Instability in Kaposi's Sarcoma-Associated Herpesvirus Infected Cells. PLoS Pathogens, 2014, 10, e1004098.	2.1	54
34	Merkel Cell Polyomavirus: Molecular Insights into the Most Recently Discovered Human Tumour Virus. Cancers, 2014, 6, 1267-1297.	1.7	37
35	Long non-coding RNAs drive metastatic progression in melanoma (Review). International Journal of Oncology, 2014, 45, 2181-2186.	1.4	9
36	The Cellular Interactome of the Coronavirus Infectious Bronchitis Virus Nucleocapsid Protein and Functional Implications for Virus Biology. Journal of Virology, 2013, 87, 9486-9500.	1.5	77

#	Article	IF	CITATIONS
37	The use of high-frequency ultrasound imaging and biofluorescence for in vivoevaluation of gene therapy vectors. BMC Medical Imaging, 2013, 13, 35.	1.4	7
38	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein: Exploiting All Stages of Viral mRNA Processing. Viruses, 2013, 5, 1901-1923.	1.5	20
39	Potential of Herpesvirus Saimiri-Based Vectors To Reprogram a Somatic Ewing's Sarcoma Family Tumor Cell Line. Journal of Virology, 2013, 87, 7127-7139.	1.5	2
40	Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling. Journal of Virology, 2013, 87, 13853-13867.	1.5	78
41	A Herpesvirus saimiri-based vector expressing TRAIL induces cell death in human carcinoma cell lines and multicellular spheroid cultures. International Journal of Oncology, 2012, 40, 2081-9.	1.4	4
42	Resveratrol Inhibits KSHV Reactivation by Lowering the Levels of Cellular EGR-1. PLoS ONE, 2012, 7, e33364.	1.1	25
43	The Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein and Its Multiple Roles in mRNA Biogenesis. Frontiers in Microbiology, 2012, 3, 59.	1.5	19
44	Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics, 2012, 12, 666-672.	1.3	57
45	Cellular uptake of highly-functionalized ruthenium(II) tris-bipyridine protein-surface mimetics. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 985-988.	1.0	6
46	Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 2011, 39, 1173-81.	1.4	5
47	Herpesvirus saimiriâ€based endothelinâ€converting enzymeâ€1 shRNA expression decreases prostate cancer cell invasion and migration. International Journal of Cancer, 2011, 129, 586-598.	2.3	13
48	Assessment of Infectivity Using a Herpesvirus Saimiri (HVS) Recombinant that Expresses HVS–GFP: Figure 1 Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066951.	0.2	2
49	Mutation of a C-Terminal Motif Affects Kaposi's Sarcoma-Associated Herpesvirus ORF57 RNA Binding, Nuclear Trafficking, and Multimerization. Journal of Virology, 2011, 85, 7881-7891.	1.5	16
50	Production of Recombinant Herpesvirus Saimiri-Based Vectors: Figure 1 Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066944.	0.2	2
51	Gardella Gel Analysis to Detect Herpesvirus Saimiri Episomal DNA. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066969.	0.2	2
52	Structural Basis for the Recognition of Cellular mRNA Export Factor REF by Herpes Viral Proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathogens, 2011, 7, e1001244.	2.1	41
53	An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export. PLoS Pathogens, 2011, 7, e1002138.	2.1	44
54	Mutation of Herpesvirus Saimiri ORF51 Glycoprotein Specifically Targets Infectivity to Hepatocellular Carcinoma Cell Lines. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-14.	3.0	3

#	Article	IF	Citations
55	Nucleolar proteomics and viral infection. Proteomics, 2010, 10, 4077-4086.	1.3	59
56	Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO Journal, 2010, 29, 1851-1864.	3.5	60
57	ORF57: Master regulator of KSHV mRNA biogenesis. Cell Cycle, 2010, 9, 2702-2703.	1.3	11
58	Kaposi's Sarcoma-Associated Herpesvirus RTA Promotes Degradation of the Hey1 Repressor Protein through the Ubiquitin Proteasome Pathway. Journal of Virology, 2009, 83, 6727-6738.	1.5	68
59	Reduction in RNA Levels Rather than Retardation of Translation Is Responsible for the Inhibition of Major Histocompatibility Complex Class I Antigen Presentation by the Glutamic Acid-Rich Repeat of Herpesvirus Saimiri Open Reading Frame 73. Journal of Virology, 2009, 83, 273-282.	1.5	10
60	Identification of a response element in a herpesvirus saimiri mRNA recognized by the ORF57 protein. Journal of General Virology, 2009, 90, 596-601.	1.3	8
61	Nucleolar disruption impairs Kaposi's sarcomaâ€associated herpesvirus ORF57â€mediated nuclear export of intronless viral mRNAs. FEBS Letters, 2009, 583, 3549-3556.	1.3	26
62	Uncoupling of hTREX demonstrates that UAP56 and hTHO-complex recruitment onto herpesvirus saimiri intronless transcripts is required for replication. Journal of General Virology, 2009, 90, 1455-1460.	1.3	11
63	Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology, 2008, 380, 191-202.	1.1	34
64	Kaposi's sarcomaâ€associated herpesvirus (KSHV) Rta and cellular HMGB1 proteins synergistically transactivate the KSHV <i>ORF50</i>	1.3	26
65	Production of an infectious Herpesvirus saimiri-based episomally maintained amplicon system. Journal of Biotechnology, 2008, 134, 287-296.	1.9	11
66	Recruitment of the Complete hTREX Complex Is Required for Kaposi's Sarcoma–Associated Herpesvirus Intronless mRNA Nuclear Export and Virus Replication. PLoS Pathogens, 2008, 4, e1000194.	2.1	85
67	Mapping the minimal regions within the ORF73 protein required for herpesvirus saimiri episomal persistence. Journal of General Virology, 2008, 89, 2843-2850.	1.3	6
68	Herpesvirus saimiri ORF57: a post-transcriptional regulatory protein. Frontiers in Bioscience - Landmark, 2008, 13, 2928.	3.0	37
69	X Box Binding Protein XBP-1s Transactivates the Kaposi's Sarcoma-Associated Herpesvirus (KSHV) ORF50 Promoter, Linking Plasma Cell Differentiation to KSHV Reactivation from Latency. Journal of Virology, 2007, 81, 13578-13586.	1.5	98
70	Herpesvirus Saimiri Episomal Persistence Is Maintained via Interaction between Open Reading Frame 73 and the Cellular Chromosome-Associated Protein MeCP2. Journal of Virology, 2007, 81, 4021-4032.	1.5	46
71	Herpesvirus Saimiri-Based Gene Delivery Vectors. Current Gene Therapy, 2006, 6, 1-15.	0.9	18
72	Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15190-15195.	3.3	72

#	Article	IF	CITATIONS
73	Efficient infection and persistence of a herpesvirus saimiri-based gene delivery vector into human tumor xenografts and multicellular spheroid cultures. Cancer Gene Therapy, 2005, 12, 248-256.	2.2	13
74	Open reading frame 73 is required for herpesvirus saimiri A11-S4 episomal persistence. Journal of General Virology, 2005, 86, 2703-2708.	1.3	25
75	The herpesvirus saimiri Rta gene autostimulates via binding to a non-consensus response element. Journal of General Virology, 2005, 86, 581-587.	1.3	3
76	The Herpesvirus Saimiri Replication and Transcription Activator Acts Synergistically with CCAAT Enhancer Binding Protein Alpha To Activate the DNA Polymerase Promoter. Journal of Virology, 2005, 79, 13548-13560.	1. 5	3
77	The prototype Î ³ -2 herpesvirus nucleocytoplasmic shuttling protein, ORF 57, transports viral RNA through the cellular mRNA export pathway. Biochemical Journal, 2005, 387, 295-308.	1.7	69
78	Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opinion on Biological Therapy, 2004, 4, 493-505.	1.4	9
79	The Herpesvirus Saimiri Open Reading Frame (ORF) 50 (Rta) Protein Contains an AT Hook Required for Binding to the ORF 50 Response Element in Delayed-Early Promoters. Journal of Virology, 2004, 78, 4936-4942.	1.5	11
80	The herpesvirus saimiri ORF73 gene product interacts with host-cell mitotic chromosomes and self-associates via its C terminus. Journal of General Virology, 2004, 85, 147-153.	1.3	33
81	The herpesvirus saimiri ORF 73 regulatory region provides long-term transgene expression in human carcinoma cell lines. Cancer Gene Therapy, 2003, 10, 49-56.	2.2	9
82	Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. Journal of General Virology, 2003, 84, 3393-3403.	1.3	49
83	Herpesvirus saimiri: A potential gene delivery vector (Review). International Journal of Molecular Medicine, 2003, 11, 139.	1.8	2
84	Herpesvirus saimiri: a potential gene delivery vector (review). International Journal of Molecular Medicine, 2003, 11, 139-48.	1.8	8
85	The Herpesvirus Saimiri Open Reading Frame 73 Gene Product Interacts with the Cellular Protein p32. Journal of Virology, 2002, 76, 11612-11622.	1.5	33
86	Identification and Utilisation of the ORF 73 Latency-Associated Regulatory Region in Herpesvirus Saimiri-Based Vectors. Clinical Science, 2002, 103, 72P-72P.	0.0	0
87	A \hat{I}^3 -2 Herpesvirus Nucleocytoplasmic Shuttle Protein Interacts with Importin $\hat{I}\pm 1$ and $\hat{I}\pm 5$. Journal of Biological Chemistry, 2001, 276, 19905-19912.	1.6	34
88	Herpesvirus Saimiri Open Reading Frame 50 (Rta) Protein Reactivates the Lytic Replication Cycle in a Persistently Infected A549 Cell Line. Journal of Virology, 2001, 75, 4008-4013.	1.5	39
89	A herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy. Cancer Gene Therapy, 2000, 7, 1077-1085.	2.2	22
90	Distinct Transcriptional and Functional Properties of the R Transactivator Gene orf50 of the Transforming Herpesvirus Saimiri Strain C488. Virology, 2000, 268, 167-177.	1.1	17

#	Article	IF	CITATIONS
91	Analysis of Gene Expression in a Human Cell Line Stably Transduced with Herpesvirus Saimiri. Journal of Virology, 2000, 74, 7331-7337.	1.5	36
92	Characterization of the herpesvirus saimiri ORF73 gene product. Journal of General Virology, 2000, 81, 2653-2658.	1.3	27
93	The carboxy terminus of the herpesvirus saimiri ORF 57 gene contains domains that are required for transactivation and transrepression. Journal of General Virology, 2000, 81, 2253-2265.	1.3	33
94	Assessment of Herpesvirus saimiri as a potential human gene therapy vector. Journal of Medical Virology, 1999, 57, 269-277.	2.5	25
95	The human herpesvirus-8 ORF 57 gene and its properties. Journal of General Virology, 1999, 80, 3207-3215.	1.3	71
96	The Open Reading Frame 57 Gene Product of Herpesvirus Saimiri Shuttles between the Nucleus and Cytoplasm and Is Involved in Viral RNA Nuclear Export. Journal of Virology, 1999, 73, 10519-10524.	1.5	47
97	The Activation Domain of Herpesvirus Saimiri R Protein Interacts with the TATA-Binding Protein. Journal of Virology, 1999, 73, 9756-9763.	1.5	30
98	Structural and evolutionary characterization of the human sorbitol dehydrogenase gene duplication. Mammalian Genome, 1998, 9, 1042-1048.	1.0	4
99	The Immediate-Early Gene Product Encoded by Open Reading Frame 57 of Herpesvirus Saimiri Modulates Gene Expression at a Posttranscriptional Level. Journal of Virology, 1998, 72, 857-861.	1.5	68
100	The Open Reading Frame (ORF) 50a Gene Product Regulates ORF 57 Gene Expression in Herpesvirus Saimiri. Journal of Virology, 1998, 72, 1967-1973.	1.5	41
101	Mapping the Minimal Domain of hMSH-2 Sufficient for Binding Mismatched Oligonucleotides. Biochemical and Biophysical Research Communications, 1997, 232, 10-13.	1.0	9
102	Analysis of the Mismatch and Insertion/Deletion Binding Properties of Thermus thermophilus, HB8, MutS. Biochemical and Biophysical Research Communications, 1997, 233, 834-837.	1.0	23
103	A Carboxy Terminal Domain of the hMSH-2 Gene Product Is Sufficient for Binding Specific Mismatched Oligonucleotides. Biochemical and Biophysical Research Communications, 1996, 225, 289-295.	1.0	11
104	Mutational Analysis of the Nucleotide Binding Domain of the Mismatch Repair Enzyme hMSH-2. Biochemical and Biophysical Research Communications, 1996, 229, 147-153.	1.0	5