
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/903209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of Practical Haplotype Graph (PHG) with the Whole-Genome Sequence Data. Methods in Molecular Biology, 2022, 2443, 273-284.	0.9	0
2	Genetic Dissection and Quantitative Trait Loci Mapping of Agronomic and Fodder Quality Traits in Sorghum Under Different Water Regimes. Frontiers in Plant Science, 2022, 13, 810632.	3.6	5
3	Identification of Candidate Genes Regulating Drought Tolerance in Pearl Millet. International Journal of Molecular Sciences, 2022, 23, 6907.	4.1	8
4	Use of wild <i>Pennisetum</i> species for improving biotic and abiotic stress tolerance in pearl millet. Crop Science, 2021, 61, 289-304.	1.8	11
5	Evaluation of fodder yield and fodder quality in sorghum and its interaction with grain yield under different water availability regimes. Current Plant Biology, 2021, 25, 100191.	4.7	9
6	Identification of microRNAs and their gene targets in cytoplasmic male sterile and fertile maintainer lines of pigeonpea. Planta, 2021, 253, 59.	3.2	10
7	Genetic Variation for Nitrogen Use Efficiency Traits in Global Diversity Panel and Parents of Mapping Populations in Pearl Millet. Frontiers in Plant Science, 2021, 12, 625915.	3.6	15
8	Genome-wide comparative transcriptome analysis of the A4-CMS line ICPA 2043 and its maintainer ICPB 2043 during the floral bud development of pigeonpea. Functional and Integrative Genomics, 2021, 21, 251-263.	3.5	11
9	Nitrogen Use Efficiency in Sorghum: Exploring Native Variability for Traits Under Variable N-Regimes. Frontiers in Plant Science, 2021, 12, 643192.	3.6	13
10	Identification of new sources of resistance to dry root rot caused by Macrophomina phaseolina isolates from India and Myanmar in a mungbean mini-core collection. Crop Protection, 2021, 143, 105569.	2.1	8
11	Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. Frontiers in Plant Science, 2021, 12, 666342.	3.6	41
12	Heterotic pools in African and Asian origin populations of pearl millet [Pennisetum glaucum (L.) R. Br.]. Scientific Reports, 2021, 11, 12197.	3.3	2
13	Field-Relevant New Sources of Resistance to Anthracnose Caused by <i>Colletotrichum truncatum</i> in a Mungbean Mini-Core Collection. Plant Disease, 2021, 105, 2001-2010.	1.4	3
14	Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.). Scientific Reports, 2021, 11, 16513.	3.3	5
15	Characterization of heterosis and genomic predictionâ€based establishment of heterotic patterns for developing better hybrids in pigeonpea. Plant Genome, 2021, 14, e20125.	2.8	6
16	Genome-Wide Association Studies (GWAS) for Traits Related to Fodder Quality and Biofuel in Sorghum: Progress and Prospects. Protein and Peptide Letters, 2021, 28, 843-854.	0.9	7
17	Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Protein and Peptide Letters, 2021, 28, 909-928.	0.9	4
18	Introgression of " <i>QTLâ€hotspot</i> ―region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome, 2021, 14, e20076.	2.8	73

#	Article	IF	CITATIONS
19	Translational Chickpea Genomics Consortium to Accelerate Genetic Gains in Chickpea (Cicer arietinum) Tj ETQq1	1.0.78431 3.5	.4 rgBT /Ov
20	Understanding Heterosis, Genetic Effects, and Genome Wide Associations for Forage Quantity and Quality Traits in Multi-Cut Pearl Millet. Frontiers in Plant Science, 2021, 12, 687859.	3.6	3
21	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106
22	Morphological and molecular characterization of Macrophomina phaseolina isolated from three legume crops and evaluation of mungbean genotypes for resistance to dry root rot. Crop Protection, 2020, 127, 104962.	2.1	39
23	Survey sequencing and in-silico development and validation of genomic SSR markers in Indian dill seed. Journal of King Saud University - Science, 2020, 32, 862-866.	3.5	4
24	Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. Theoretical and Applied Genetics, 2020, 133, 873-888.	3.6	15
25	Development of genomic microsatellite markers in cluster bean using next-generation DNA sequencing and their utility in diversity analysis. Current Plant Biology, 2020, 21, 100134.	4.7	15
26	Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. Theoretical and Applied Genetics, 2020, 133, 737-749.	3.6	18
27	Availability of soil iron determines the distribution strategy and seed iron content in mungbean (Vigna radiata) plants. Plant and Soil, 2020, 446, 413-423.	3.7	5
28	The Ontologies Community of Practice: A CGIAR Initiative for Big Data in Agrifood Systems. Patterns, 2020, 1, 100105.	5.9	53
29	Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Scientific Reports, 2020, 10, 10294.	3.3	33
30	Fine-Mapping of Sorghum Stay-Green QTL on Chromosome10 Revealed Genes Associated with Delayed Senescence. Genes, 2020, 11, 1026.	2.4	20
31	Genome-Wide DArTSeq Genotyping and Phenotypic Based Assessment of Within and Among Accessions Diversity and Effective Sample Size in the Diverse Sorghum, Pearl Millet, and Pigeonpea Landraces. Frontiers in Plant Science, 2020, 11, 587426.	3.6	13
32	Structural and Functional Characteristics of miRNAs in Five Strategic Millet Species and Their Utility in Drought Tolerance. Frontiers in Genetics, 2020, 11, 608421.	2.3	14
33	Translational Pigeonpea Genomics Consortium for Accelerating Genetic Gains in Pigeonpea (Cajanus) Tj ETQq1 1	0,784314	rgBT /Over ⊈2
34	Multiple Genome Wide Association Mapping Models Identify Quantitative Trait Nucleotides for Brown Planthopper (Nilaparvata lugens) Resistance in MAGIC Indica Population of Rice. Vaccines, 2020, 8, 608.	4.4	7
35	Genome-Wide SNP Discovery and Mapping QTLs for Seed Iron and Zinc Concentrations in Chickpea (Cicer arietinum L.). Frontiers in Nutrition, 2020, 7, 559120.	3.7	29
36	African and Asian origin pearl millet populations: Genetic diversity pattern and its association with yield heterosis. Crop Science, 2020, 60, 3035-3048.	1.8	11

ABHISHEK RATHORE

#	Article	IF	CITATIONS
37	Identification of quantitative trait loci associated with iron deficiency chlorosis resistance in groundnut (<i>Arachis hypogaea</i>). Plant Breeding, 2020, 139, 790-803.	1.9	6
38	Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia. Frontiers in Plant Science, 2020, 11, 353.	3.6	33
39	A sorghum practical haplotype graph facilitates genomeâ€wide imputation and costâ€effective genomic prediction. Plant Genome, 2020, 13, e20009.	2.8	54
40	Forecasting fish yield using statistical nonlinear growth models – A reparameterization concept. Indian Journal of Extension Education, 2020, 56, 9-14.	0.0	0
41	BrAPl—an application programming interface for plant breeding applications. Bioinformatics, 2019, 35, 4147-4155.	4.1	82
42	Exploring the Genetic Cipher of Chickpea (Cicer arietinum L.) Through Identification and Multi-environment Validation of Resistant Sources Against Fusarium Wilt (Fusarium oxysporum f. sp.) Tj ETQq0 C) 03: <i>g</i> BT /C	vestock 10 T
43	Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.)Moench]. Journal of Cereal Science, 2019, 90, 102850.	3.7	21
44	Utilization of Molecular Marker Based Genetic Diversity Patterns in Hybrid Parents to Develop Better Forage Quality Multi-Cut Hybrids in Pearl Millet. Agriculture (Switzerland), 2019, 9, 97.	3.1	9
45	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
46	Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Molecular Breeding, 2019, 39, 2.	2.1	62
47	Genetic variability, genotype × environment interaction and correlation analysis for grain iron and zinc contents in recombinant inbred line population of pearl millet [Pennisetum glaucum (L). R Indian Journal of Genetics and Plant Breeding, 2019, 79, .	0.5	9
48	Current Status and Future Prospects of Next-Generation Data Management and Analytical Decision Support Tools for Enhancing Genetic Gains in Crops. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 277-292.	1.1	4
49	Identification of Ideal Locations and Stable High Biomass Sorghum Genotypes in semiarid Tropics. Sugar Tech, 2018, 20, 323-335.	1.8	4
50	Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica, 2018, 214, 1.	1.2	28
51	Relationship of Parental Genetic Distance with Heterosis and Specific Combining Ability in Sesame (Sesamum indicum L.) Based on Phenotypic and Molecular Marker Analysis. Biochemical Genetics, 2018, 56, 188-209.	1.7	11
52	Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
53	Development and Application of Highâ€Density Axiom <i>Cajanus</i> SNP Array with 56K SNPs to Understand the Genome Architecture of Released Cultivars and Founder Genotypes. Plant Genome, 2018, 11, 180005.	2.8	35

54 Molecular Evidence for Two Domestication Events in the Pea Crop. Genes, 2018, 9, 535.

2.4 42

ABHISHEK RATHORE

#	Article	IF	CITATIONS
55	Survey of Fungal Foliar and Panicle Diseases of Sorghum in Important Agroecological Zones of Tanzania and Uganda. Plant Health Progress, 2018, 19, 265-271.	1.4	6
56	Genetic Diversity Patterns and Heterosis Prediction Based on SSRs and SNPs in Hybrid Parents of Pearl Millet. Crop Science, 2018, 58, 2379-2390.	1.8	15
57	Genetic variation and relationships of total seed protein content with some agronomic traits in pigeonpea (Cajanus cajan (L.) Millsp.). Australian Journal of Crop Science, 2018, 12, 1859-1865.	0.3	19
58	Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids. G3: Genes, Genomes, Genetics, 2018, 8, 2513-2522.	1.8	41
59	Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatalysis and Agricultural Biotechnology, 2018, 15, 35-42.	3.1	20
60	Molecular Mapping of QTLs for Heat Tolerance in Chickpea. International Journal of Molecular Sciences, 2018, 19, 2166.	4.1	73
61	Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes, 2018, 9, 248.	2.4	61
62	Genetic diversity and association mapping of Ethiopian and exotic finger millet accessions. Crop and Pasture Science, 2018, 69, 879.	1.5	19
63	Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Scientific Reports, 2018, 8, 11701.	3.3	61
64	Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS ONE, 2018, 13, e0194056.	2.5	62
65	Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Scientific Reports, 2017, 7, 1911.	3.3	55
66	Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 2017, 49, 1082-1088.	21.4	218
67	Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Scientific Reports, 2017, 7, 1813.	3.3	48
68	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
69	Occurrence of aflatoxins and its management in diverse cropping systems of central Tanzania. Mycotoxin Research, 2017, 33, 323-331.	2.3	55
70	Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Scientific Reports, 2017, 7, 17384.	3.3	59
71	Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench). Frontiers in Plant Science, 2017, 8, 712.	3.6	77
72	Towards Defining Heterotic Gene Pools in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 2017, 8, 1934.	3.6	42

#	Article	IF	CITATIONS
73	Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt. Frontiers in Plant Science, 2016, 7, 253.	3.6	48
74	Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 2016, 7, 455.	3.6	180
75	Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 2016, 7, 1636.	3.6	77
76	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	3.6	127
77	Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Reports, 2016, 6, 38636.	3.3	77
78	Novel cross linked guar gum-g-poly(acrylate) porous superabsorbent hydrogels: Characterization and swelling behaviour in different environments. Carbohydrate Polymers, 2016, 149, 175-185.	10.2	98
79	Bayesian analysis for genotype x environment interactions and the GGE-biplot assessment: Evaluation of balanced classifications with missing values. International Journal of Applied Sciences and Biotechnology, 2015, 3, 210-217.	0.8	1
80	Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones. PLoS ONE, 2015, 10, e0139067.	2.5	22
81	Combining ability of some sorghum lines for dry lands and sub-humid environments of East Africa. African Journal of Agricultural Research Vol Pp, 2015, 10, 2048-2060.	0.5	4
82	Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis) Tj ETQq0 0 0 rgBT /	Overlock 1.2	10 Jf 50 382
83	Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Frontiers in Plant Science, 2015, 6, 50.	3.6	57
84	The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. SpringerPlus, 2015, 4, 31.	1.2	55
85	The AVRDC – The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genomics, 2015, 16, 344.	2.8	95
86	Patterns of Molecular Diversity in Current and Previously Developed Hybrid Parents of Pearl Millet [<i>Pennisetum glaucum</i> (L.) R. Br.]. American Journal of Plant Sciences, 2015, 06, 1697-1712.	0.8	23
87	An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data. PLoS ONE, 2014, 9, e101754.	2.5	10
88	Genetic dissection of drought tolerance in chickpea (CicerÂarietinum L.). Theoretical and Applied Genetics, 2014, 127, 445-462.	3.6	304
89	Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches. PLoS ONE, 2014, 9, e96758.	2.5	187
90	Exploring Germplasm Diversity to Understand the Domestication Process in Cicer spp. Using SNP and DArT Markers. PLoS ONE, 2014, 9, e102016.	2.5	42

#	Article	IF	CITATIONS
91	Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica, 2013, 193, 121-133.	1.2	111
92	Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus, 2013, 2, 574.	1.2	79
93	New sources of resistance to Fusarium wilt and sterility mosaic disease in a mini-core collection of pigeonpea germplasm. European Journal of Plant Pathology, 2012, 133, 707-714.	1.7	47
94	The Ontologies Community of Practice: An Initiative by the CGIAR Platform for Big Data in Agriculture. SSRN Electronic Journal, 0, , .	0.4	4