
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031990/publications.pdf Version: 2024-02-01

LEIELLÄINSSON

#	Article	IF	CITATIONS
1	Production of Exopolysaccharides by Cultivation of Halotolerant Bacillus atrophaeus BU4 in Glucose- and Xylose-Based Synthetic Media and in Hydrolysates of Quinoa Stalks. Fermentation, 2022, 8, 79.	1.4	3
2	Hydrothermal Pretreatment of Lignocellulosic Feedstocks to Facilitate Biochemical Conversion. Frontiers in Bioengineering and Biotechnology, 2022, 10, 846592.	2.0	32
3	Valorization of hydrolysis lignin from a spruce-based biorefinery by applying γ-valerolactone treatment. Bioresource Technology, 2022, 359, 127466.	4.8	9
4	Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions. Bioresource Technology, 2021, 319, 124211.	4.8	33
5	Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor. Industrial Crops and Products, 2021, 159, 113077.	2.5	35
6	Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnology for Biofuels, 2021, 14, 43.	6.2	10
7	Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy, 2021, 11, 487.	1.3	29
8	The impact of using different wood qualities and wood species on chips produced using a novel type of pilot drum chipper. Nordic Pulp and Paper Research Journal, 2021, 36, 214-226.	0.3	1
9	Factors Affecting Detoxification of Softwood Enzymatic Hydrolysates Using Sodium Dithionite. Processes, 2021, 9, 887.	1.3	2
10	Hydrothermal Pretreatment of Water-Extracted and Aqueous Ethanol-Extracted Quinoa Stalks for Enzymatic Saccharification of Cellulose. Energies, 2021, 14, 4102.	1.6	6
11	Comparison of Efficiency and Cost of Methods for Conditioning of Slurries of Steam-Pretreated Softwood. Frontiers in Energy Research, 2021, 9, .	1.2	2
12	The effects of chemical and structural factors on the enzymatic saccharification of Eucalyptus sp. samples pre-treated by various technologies. Industrial Crops and Products, 2021, 166, 113449.	2.5	16
13	Saccharification Potential of Transgenic Greenhouse- and Field-Grown Aspen Engineered for Reduced Xylan Acetylation. Frontiers in Plant Science, 2021, 12, 704960.	1.7	6
14	Fractionated Lignosulfonates for Laccase-Catalyzed Oxygen-Scavenging Films and Coatings. Molecules, 2021, 26, 6322.	1.7	2
15	Fluorescence Lifetime Imaging as an <i>In Situ</i> and Label-Free Readout for the Chemical Composition of Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 17381-17392.	3.2	9
16	New drum-chipping technology for a more uniform size distribution of wood chips. Holzforschung, 2020, 74, 116-122.	0.9	6
17	Effects of Biosurfactants on Enzymatic Saccharification and Fermentation of Pretreated Softwood. Molecules, 2020, 25, 3559.	1.7	17
18	Evaluation of chipping and impregnation of Scots pine heartwood with sulfite cooking liquor. SN Applied Sciences, 2020, 2, 1.	1.5	0

#	Article	IF	CITATIONS
19	Hybrid Aspen Expressing a Carbohydrate Esterase Family 5 Acetyl Xylan Esterase Under Control of a Wood-Specific Promoter Shows Improved Saccharification. Frontiers in Plant Science, 2020, 11, 380.	1.7	18
20	Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 2019, 12, 677-687.	2.0	33
21	Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH. Carbohydrate Polymers, 2019, 215, 280-288.	5.1	20
22	Dilute-sulfuric acid pretreatment of de-starched cassava stems for enhancing the enzymatic convertibility and total glucan recovery. Industrial Crops and Products, 2019, 132, 301-310.	2.5	16
23	Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (Lentinula) Tj ETQq1 1	0.784314 4.8	rgBT /Overio
24	Evaluation of novel drum chipper technology: pilot-scale production of short wood chips. Tappi Journal, 2019, 18, 585-592.	0.2	2
25	Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresource Technology, 2018, 262, 242-250.	4.8	36
26	Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass and Bioenergy, 2018, 109, 125-134.	2.9	72
27	A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genomics, 2018, 19, 11.	1.2	25
28	Downregulating aspen xylan biosynthetic <scp>GT</scp> 43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytologist, 2018, 219, 230-245.	3.5	43
29	Effects of impregnation of softwood with sulfuric acid and sulfur dioxide on chemical and physical characteristics, enzymatic digestibility, and fermentability. Bioresource Technology, 2018, 247, 200-208.	4.8	44
30	Engineering Non-cellulosic Polysaccharides of Wood for the Biorefinery. Frontiers in Plant Science, 2018, 9, 1537.	1.7	36
31	Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. Energies, 2018, 11, 2936.	1.6	55
32	Scaleâ€up of production of bacterial nanocellulose using submerged cultivation. Journal of Chemical Technology and Biotechnology, 2018, 93, 3418-3427.	1.6	28
33	Comparison of catalytically non-productive adsorption of fungal proteins to lignins and pseudo-lignin using isobaric mass tagging. Bioresource Technology, 2018, 268, 393-401.	4.8	16
34	Downregulation of <scp>RWA</scp> genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist, 2017, 214, 1491-1505.	3.5	50
35	Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist, 2017, 214, 796-807.	3.5	54
36	Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment. Industrial Crops and Products, 2017, 97, 21-31.	2.5	43

#	Article	IF	CITATIONS
37	Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. International Journal of Biological Macromolecules, 2017, 105, 438-446.	3.6	28
38	A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Scientific Reports, 2017, 7, 15798.	1.6	35
39	In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Biotechnology for Biofuels, 2017, 10, 98.	6.2	64
40	Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets. Polymers, 2017, 9, 458.	2.0	24
41	Comparison of [HSO4]â^', [Cl]â^' and [MeCO2]â^' as anions in pretreatment of aspen and spruce with imidazolium-based ionic liquids. BMC Biotechnology, 2017, 17, 82.	1.7	11
42	Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion. Microbial Cell Factories, 2017, 16, 199.	1.9	26
43	Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors. Microbial Cell Factories, 2017, 16, 229.	1.9	15
44	Using <i>in situ</i> nanocelluloseâ€coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Biotechnology Progress, 2016, 32, 1077-1084.	1.3	11
45	Production of bacterial nanocellulose and enzyme from [AMIM]Cl-pretreated waste cotton fabrics: effects of dyes on enzymatic saccharification and nanocellulose production. Journal of Chemical Technology and Biotechnology, 2016, 91, 1413-1421.	1.6	34
46	Biochemical Conversion of Torrefied Norway Spruce After Pretreatment with Acid or Ionic Liquid. Bioenergy Research, 2016, 9, 355-368.	2.2	31
47	Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 2016, 199, 103-112.	4.8	1,507
48	Ozone detoxification of steam-pretreated Norway spruce. Biotechnology for Biofuels, 2015, 8, 196.	6.2	6
49	Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast. AMB Express, 2015, 5, 62.	1.4	19
50	Identification of Small Aliphatic Aldehydes in Pretreated Lignocellulosic Feedstocks and Evaluation of Their Inhibitory Effects on Yeast. Journal of Agricultural and Food Chemistry, 2015, 63, 9747-9754.	2.4	23
51	Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood. Bioresource Technology, 2015, 196, 129-135.	4.8	15
52	Expression of a fungal glucuronoyl esterase in Populus: Effects on wood properties and saccharification efficiency. Phytochemistry, 2015, 112, 210-220.	1.4	65
53	Evaluation of Oxalate Decarboxylases in Industrial Bleaching Filtrates and in Pulp-Mill Experiments. Industrial Biotechnology, 2014, 10, 126-129.	0.5	3
54	Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. Journal of Biological Engineering, 2014, 8, 1.	2.0	60

#	Article	IF	CITATIONS
55	Aspen pectate lyase Ptxt PL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. Biotechnology for Biofuels, 2014, 7, 11.	6.2	71
56	Tolerance of the Nanocellulose-Producing Bacterium <i>Gluconacetobacter xylinus</i> to Lignocellulose-Derived Acids and Aldehydes. Journal of Agricultural and Food Chemistry, 2014, 62, 9792-9799.	2.4	22
57	Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1191-1200.	1.4	15
58	Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnology, 2014, 14, 20.	1.7	34
59	Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass. BMC Biotechnology, 2014, 14, 34.	1.7	46
60	Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microbial Cell Factories, 2014, 13, 62.	1.9	31
61	Extruded polymer films for optimal enzyme-catalyzed oxygen scavenging. Chemical Engineering Science, 2014, 108, 1-8.	1.9	7
62	Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels, 2013, 6, 25.	6.2	116
63	Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6, 16.	6.2	1,074
64	Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology, 2013, 148, 70-77.	4.8	123
65	Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microbial Cell Factories, 2013, 12, 93.	1.9	86
66	Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresource Technology, 2013, 136, 368-376.	4.8	96
67	Engineering Aspects of Bioethanol Synthesis. Advances in Chemical Engineering, 2013, 42, 1-73.	0.5	5
68	Enzymatic hydrolysis of Norway spruce andÂsugarcane bagasse after treatment with 1â€allylâ€3â€methylimidazolium formate. Journal of Chemical Technology and Biotechnology, 2013, 88, 2209-2215.	1.6	12
69	Co-immobilization of oxalate oxidase and catalase in films for scavenging of oxygen or oxalic acid. Biochemical Engineering Journal, 2013, 72, 96-101.	1.8	20
70	The effects of coating structure and water-holding capacity on the oxygen-scavenging ability of enzymes embedded in the coating layer. Tappi Journal, 2013, 12, 43-52.	0.2	4
71	Oxygen-scavenging coatings and films based on lignosulfonates and laccase. Journal of Biotechnology, 2012, 161, 14-18.	1.9	34
72	Comparative proteome analysis of Saccharomyces cerevisiae: A global overview of in vivo targets of the yeast activator protein 1. BMC Genomics, 2012, 13, 230.	1.2	21

#	Article	IF	CITATIONS
73	Oxalate decarboxylase of <i>Trametes versicolor</i> : biochemical characterization and performance in bleaching filtrates from the pulp and paper industry. Journal of Chemical Technology and Biotechnology, 2012, 87, 1600-1606.	1.6	4
74	Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 2012, 104, 503-508.	4.8	188
75	Evaluation of the Potential of Fungal and Plant Laccases for Active-Packaging Applications. Journal of Agricultural and Food Chemistry, 2011, 59, 5390-5395.	2.4	15
76	Coating: Oxygen scavenging enzymes in coatings – Effect of coating procedures on enzyme activity. Nordic Pulp and Paper Research Journal, 2011, 26, 197-204.	0.3	14
77	Effects of ionic substances in bleaching filtrates and of lignosulfonates on the activity of oxalate oxidase from barley. Engineering in Life Sciences, 2011, 11, 245-252.	2.0	2
78	Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 891-899.	1.4	16
79	Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microbial Cell Factories, 2011, 10, 68.	1.9	99
80	Effect of sulfur oxyanions on lignocelluloseâ€derived fermentation inhibitors. Biotechnology and Bioengineering, 2011, 108, 2592-2599.	1.7	40
81	Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 2011, 102, 1254-1263.	4.8	128
82	Reducing agents improve enzymatic hydrolysis of cellulosic substrates in the presence of pretreatment liquid. Journal of Biotechnology, 2011, 155, 244-250.	1.9	27
83	Evaluation of Oxalate Decarboxylase and Oxalate Oxidase for Industrial Applications. Applied Biochemistry and Biotechnology, 2010, 161, 255-263.	1.4	22
84	Identification of Saccharomyces cerevisiae Genes Involved in the Resistance to Phenolic Fermentation Inhibitors. Applied Biochemistry and Biotechnology, 2010, 161, 106-115.	1.4	36
85	Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochemistry, 2010, 45, 264-271.	1.8	65
86	Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant <i>Aspergillus niger</i> . Applied and Environmental Microbiology, 2009, 75, 2366-2374.	1.4	44
87	Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants. Bioorganic Chemistry, 2009, 37, 143-148.	2.0	18
88	Diastereomer selectivity in the degradation of a lignin model compound of the arylglycerol β-aryl ether type by white-rot fungi. Enzyme and Microbial Technology, 2008, 43, 199-204.	1.6	10
89	Enzyme-based control of oxalic acid in the pulp and paper industry. Enzyme and Microbial Technology, 2008, 43, 78-83.	1.6	26
90	Preparation of a PETâ€Hydrolyzing Lipase from<i>Aspergillus oryzae</i>by the Addition of Bis(2â€hydroxyethyl) Terephthalate to the Culture Medium and Enzymatic Modification of PET Fabrics . Engineering in Life Sciences, 2008, 8, 268-276.	2.0	44

#	Article	IF	CITATIONS
91	Enzymatic conversion of epigallocatechin gallate to epigallocatechin with an inducible hydrolase from <i>Aspergillus niger</i> . Biocatalysis and Biotransformation, 2008, 26, 306-312.	1.1	9
92	Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production. , 2007, , 339-352.		4
93	Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology, 2007, 98, 1767-1773.	4.8	154
94	Differences in stereo-preference in the oxidative degradation of diastereomers of the lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol with enzymic and non-enzymic oxidants. Journal of Molecular Catalysis B: Enzymatic, 2007, 45, 21-26.	1.8	27
95	The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries. Applied Biochemistry and Biotechnology, 2007, 137-140, 327-337.	1.4	14
96	Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Applied Biochemistry and Biotechnology, 2007, 137-140, 339-352.	1.4	51
97	The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries. , 2007, , 327-337.		0
98	Heterologous Expression of Trametes versicolor Laccase in Pichia pastoris and Aspergillus niger. , 2006, , 195-214.		6
99	Heterologous Expression of <i>Trametes versicolor</i> Laccase in <i>Pichia pastoris</i> and <i>Aspergillus niger</i> . Applied Biochemistry and Biotechnology, 2006, 129, 195-214.	1.4	45
100	Oxidation Capacity of Laccases and Peroxidases as Reflected in Experiments With Methoxy-Substituted Benzyl Alcohols. Applied Biochemistry and Biotechnology, 2006, 129, 303-319.	1.4	17
101	Optimal Conditions for Alkaline Detoxification of Dilute-Acid Lignocellulose Hydrolysates. Applied Biochemistry and Biotechnology, 2006, 130, 599-611.	1.4	61
102	Optimal Conditions for Alkaline Detoxification of Dilute-Acid Lignocellulose Hydrolysates. , 2006, , 599-611.		0
103	Oxidation Capacity of Laccases and Peroxidases as Reflected in Experiments With Methoxy-Substituted Benzyl Alcohols. , 2006, , 303-319.		0
104	Ammonium Hydroxide Detoxification of Spruce Acid Hydrolysates. Applied Biochemistry and Biotechnology, 2005, 124, 0911-0922.	1.4	46
105	Critical Conditions for Improved Fermentability During Overliming of Acid Hydrolysates from Spruce. Applied Biochemistry and Biotechnology, 2005, 124, 1031-1044.	1.4	38
106	Product profiles in enzymic and non-enzymic oxidations of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 100-107.	1.8	16
107	Critical Conditions for Improved Fermentability During Overliming of Acid Hydrolysates from Spruce. , 2005, , 1031-1044.		4

Ammonium Hydroxide Detoxification of Spruce Acid Hydrolysates. , 2005, , 911-922.

#	Article	IF	CITATIONS
109	Selection of Anion Exchangers for Detoxification of Dilute-Acid Hydrolysates from Spruce. Applied Biochemistry and Biotechnology, 2004, 114, 525-538.	1.4	28
110	Heterologous expression of barley and wheat oxalate oxidase in an E. coli trxB gor double mutant. Journal of Biotechnology, 2004, 109, 53-62.	1.9	17
111	Selection of Anion Exchangers for Detoxification of Dilute-Acid Hydrolysates from Spruce. , 2004, , 525-538.		1
112	Limits for Alkaline Detoxification of Dilute-Acid Lignocellulose Hydrolysates. Applied Biochemistry and Biotechnology, 2003, 107, 615-628.	1.4	65
113	Treatment of Pulp and Paper Industry Process Waters with Oxalate Oxidase: Compounds Interfering with the Activity. ACS Symposium Series, 2003, , 81-92.	0.5	6
114	Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme and Microbial Technology, 2003, 32, 386-395.	1.6	144
115	Rapid and convenient determination of oxalic acid employing a novel oxalate biosensor based on oxalate oxidase and SIRE technology. Biosensors and Bioelectronics, 2003, 18, 1173-1181.	5.3	34
116	Generation of the improved recombinant xylose-utilizing TMB 3400 by random mutagenesis and physiological comparison with CBS 6054. FEMS Yeast Research, 2003, 3, 319-326.	1.1	126
117	Molecular Analysis of a Saccharomyces cerevisiae Mutant with Improved Ability To Utilize Xylose Shows Enhanced Expression of Proteins Involved in Transport, Initial Xylose Metabolism, and the Pentose Phosphate Pathway. Applied and Environmental Microbiology, 2003, 69, 740-746.	1.4	108
118	Limits for Alkaline Detoxification of Dilute-Acid Lignocellulose Hydrolysates. , 2003, , 615-628.		1
119	Effect of Different Forms of Alkali Treatment on Specific Fermentation Inhibitors and on the Fermentability of Lignocellulose Hydrolysates for Production of Fuel Ethanol. Journal of Agricultural and Food Chemistry, 2002, 50, 5318-5325.	2.4	129
120	Fermentation strategies for improved heterologous expression of laccase inPichia pastoris. Biotechnology and Bioengineering, 2002, 79, 438-449.	1.7	178
121	Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnology and Bioengineering, 2002, 79, 694-700.	1.7	48
122	Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2002, 31, 274-282.	1.6	252
123	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 857-862.	1.7	16
124	Treatment with Lignin Residue. Applied Biochemistry and Biotechnology, 2002, 98-100, 563-576.	1.4	20
125	Comparison of the Fermentability of Enzymatic Hydrolyzates of Sugarcane Bagasse Pretreated by Steam Explosion Using Different Impregnating Agents. Applied Biochemistry and Biotechnology, 2002, 98-100, 699-716.	1.4	134
126	Treatment with Lignin Residue. , 2002, , 563-575.		1

8

#	Article	IF	CITATIONS
127	Comparison of the Fermentability of Enzymatic Hydrolyzates of Sugarcane Bagasse Pretreated by Steam Explosion Using Different Impregnating Agents. , 2002, , 699-716.		6
128	Metabolic Engineering of Saccharomyces cerevisiae for Xylose Utilization. Advances in Biochemical Engineering/Biotechnology, 2001, 73, 53-84.	0.6	109
129	Detoxification of Lignocellulose Hydrolysates with Ion-Exchange Resins. Applied Biochemistry and Biotechnology, 2001, 91-93, 35-50.	1.4	178
130	Detoxification of Lignocellulose Hydrolysates with Ion-Exchange Resins. , 2001, , 35-49.		4
131	Influence of Lignocellulose-Derived Aromatic Compounds on Oxygen-Limited Growth and Ethanolic Fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2000, 84-86, 617-632.	1.4	214
132	Influence of Lignocellulose-Derived Aromatic Compounds on Oxygen-Limited Growth and Ethanolic Fermentation by Saccharomyces cerevisiae. , 2000, , 617-632.		13
133	Comparison of Different Methods for the Detoxification of Lignocellulose Hydrolyzates of Spruce. Applied Biochemistry and Biotechnology, 1999, 77, 91-104.	1.4	422
134	Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. BBA - Proteins and Proteomics, 1995, 1251, 210-215.	2.1	96
135	Tandem lignin peroxidase genes of the fungus Trametes versicolor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 408-412.	2.4	18
136	A novel type of peroxidase gene from the white-rot fungus Trametes versicolor. BBA - Proteins and Proteomics, 1994, 1207, 255-259.	2.1	24
137	Stereospecificity in enzymic and non-enzymic oxidation of β-O-4 lignin model compounds. FEBS Letters, 1990, 276, 45-48.	1.3	16
138	Trametes versicolorligninase: Isozyme sequence homology and substrate specificity. FEBS Letters, 1989, 247, 143-146.	1.3	24
139	Purification of Ligninase Isozymes from the White-Rot Fungus Trametes versicolor Acta Chemica Scandinavica, 1987, 41b, 766-769.	0.7	60