
Pawel Wargocki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	4.8	933
2	Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 2011, 46, 922-937.	3.0	790
3	The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity. Indoor Air, 2000, 10, 222-236.	2.0	469
4	Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air, 2012, 22, 119-131.	2.0	391
5	Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air, 1999, 9, 165-179.	2.0	367
6	Ventilation and health in non-industrial indoor environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air, 2002, 12, 113-128.	2.0	309
7	Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 2011, 43, 1057-1062.	3.1	267
8	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	1.4	264
9	The Effects of Moderately Raised Classroom Temperatures and Classroom Ventilation Rate on the Performance of Schoolwork by Children (RP-1257). HVAC and R Research, 2007, 13, 193-220.	0.9	245
10	Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air, 2011, 21, 376-390.	2.0	243
11	Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air, 2017, 27, 47-64.	2.0	214
12	Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 2011, 45, 4329-4343.	1.9	213
13	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	6.0	192
14	Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 2013, 59, 581-589.	3.0	188
15	Ten questions concerning green buildings and indoor air quality. Building and Environment, 2017, 112, 351-358.	3.0	179
16	Questionnaire survey on factors influencing comfort with indoor environmental quality in Danish housing. Building and Environment, 2012, 50, 56-64.	3.0	155
17	Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air, 2004, 14, 178-187.	2.0	153
18	Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Building and Environment, 2017, 112, 359-366.	3.0	152

#	Article	IF	CITATIONS
19	The effects of bedroom air quality on sleep and nextâ€day performance. Indoor Air, 2016, 26, 679-686.	2.0	142
20	What does the scientific literature tell us about the ventilation–health relationship in public and residential buildings?. Building and Environment, 2015, 94, 273-286.	3.0	132
21	Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms. Building and Environment, 2014, 75, 46-57.	3.0	117
22	The Effects of Outdoor Air Supply Rate and Supply Air Filter Condition in Classrooms on the Performance of Schoolwork by Children (RP-1257). HVAC and R Research, 2007, 13, 165-191.	0.9	116
23	The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates. Indoor Air, 2004, 14, 7-16.	2.0	108
24	Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration. Building and Environment, 2017, 114, 96-105.	3.0	105
25	Ten questions concerning well-being in the built environment. Building and Environment, 2020, 180, 106949.	3.0	105
26	Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors. Indoor Air, 2017, 27, 65-77.	2.0	100
27	The relationships between classroom air quality and children's performance in school. Building and Environment, 2020, 173, 106749.	3.0	94
28	Association between classroom ventilation mode and learning outcome in Danish schools. Building and Environment, 2015, 92, 494-503.	3.0	92
29	The relationship between classroom temperature and children's performance in school. Building and Environment, 2019, 157, 197-204.	3.0	79
30	Human responses to carbon dioxide, a follow-up study at recommended exposure limits in non-industrial environments. Building and Environment, 2016, 100, 162-171.	3.0	78
31	Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements. Building and Environment, 2012, 57, 370-376.	3.0	77
32	Subjective perceptions, symptom intensity and performance: a comparison of two independent studies, both changing similarly the pollution load in an office. Indoor Air, 2002, 12, 74-80.	2.0	74
33	Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Environmental Health, 2016, 15, 35.	1.7	74
34	Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China. Energy, 2019, 182, 471-482.	4.5	73
35	Human Ammonia Emission Rates under Various Indoor Environmental Conditions. Environmental Science & Technology, 2020, 54, 5419-5428.	4.6	69
36	Physiological and psychological reactions of subâ€ŧropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%. Indoor Air, 2019, 29, 215-230.	2.0	63

#	Article	IF	CITATIONS
37	Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy and Buildings, 2020, 209, 109683.	3.1	61
38	Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings. Building and Environment, 2015, 92, 200-208.	3.0	59
39	Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China. Energy and Buildings, 2019, 186, 56-70.	3.1	59
40	Towards the definition of indicators for assessment of indoor air quality and energy performance in low-energy residential buildings. Energy and Buildings, 2017, 152, 492-502.	3.1	58
41	Indoor environmental quality, occupant perception, prevalence of sick building syndrome symptoms, and sick leave in a Green Mark Platinum-rated versus a non-Green Mark-rated building: A case study. Science and Technology for the Built Environment, 2015, 21, 35-44.	0.8	57
42	Use of visual CO ₂ feedback as a retrofit solution for improving classroom air quality. Indoor Air, 2015, 25, 105-114.	2.0	52
43	Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation. Energy and Buildings, 2002, 34, 775-783.	3.1	51
44	Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 285-298.	1.8	51
45	The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: Overview of experimental methodology and preliminary results. Indoor Air, 2020, 30, 1213-1228.	2.0	51
46	On the Development of Health-Based Ventilation Guidelines: Principles and Framework. International Journal of Environmental Research and Public Health, 2018, 15, 1360.	1.2	50
47	Sensory pollution sources in buildings. Indoor Air, 2004, 14, 82-91.	2.0	49
48	The Effects of Ventilation in Homes on Health. International Journal of Ventilation, 2013, 12, 101-118.	0.2	49
49	Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents. Indoor Air, 2018, 28, 146-163.	2.0	48
50	Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration. Environmental Science & Technology, 2019, 53, 14441-14448.	4.6	48
51	Bedroom ventilation: Review of existing evidence and current standards. Building and Environment, 2020, 184, 107229.	3.0	47
52	Indoor environmental quality, occupant satisfaction, and acute buildingâ€related health symptoms in Green Markâ€certified compared with nonâ€certified office buildings. Indoor Air, 2019, 29, 112-129.	2.0	46
53	Thermal effects on human performance in office environment measured by integrating task speed and accuracy. Applied Ergonomics, 2014, 45, 490-495.	1.7	45
54	Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley model. Building and Environment, 2021, 205, 108278.	3.0	44

#	Article	IF	CITATIONS
55	Emission Rates of Volatile Organic Compounds from Humans. Environmental Science & Technology, 2022, 56, 4838-4848.	4.6	43
56	Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 2022, 57, 104908.	1.6	43
57	Respiratory infection risk-based ventilation design method. Building and Environment, 2021, 206, 108387.	3.0	42
58	Electrostatic Precipitators as an Indoor Air Cleaner—A Literature Review. Sustainability, 2020, 12, 8774.	1.6	41
59	Healthy Indoor Environments: The Need for a Holistic Approach. International Journal of Environmental Research and Public Health, 2018, 15, 1874.	1.2	39
60	The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin. Journal of Exposure Science and Environmental Epidemiology, 2008, 18, 272-281.	1.8	37
61	Perceived air quality and cognitive performance decrease at moderately raised indoor temperatures even when clothed for comfort. Indoor Air, 2020, 30, 841-859.	2.0	36
62	Indoor humidity of dwellings and association with building characteristics, behaviors and health in a northern climate. Building and Environment, 2021, 198, 107885.	3.0	36
63	Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624. Science and Technology for the Built Environment, 2018, 24, 626-637.	0.8	35
64	Reducing classroom temperature in a tropical climate improved the thermal comfort and the performance of elementary school pupils. Indoor Air, 2018, 28, 892-904.	2.0	34
65	How does indoor environmental quality in green refurbished office buildings compare with the one in new certified buildings?. Building and Environment, 2020, 171, 106677.	3.0	33
66	The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Building and Environment, 2010, 45, 1434-1440.	3.0	31
67	Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects. Indoor Air, 2010, 20, 341-354.	2.0	29
68	The Effects of Electrostatic Particle Filtration and Supply-Air Filter Condition in Classrooms on the Performance of Schoolwork by Children (RP-1257). HVAC and R Research, 2008, 14, 327-344.	0.9	28
69	Total OH Reactivity of Emissions from Humans: In Situ Measurement and Budget Analysis. Environmental Science & Technology, 2021, 55, 149-159.	4.6	28
70	Human Emissions of Size-Resolved Fluorescent Aerosol Particles: Influence of Personal and Environmental Factors. Environmental Science & Technology, 2021, 55, 509-518.	4.6	28
71	Can a photocatalytic air purifier be used to improve the perceived air quality indoors?. Indoor Air, 2010, 20, 255-262.	2.0	26
72	Meta-analysis of 35 studies examining the effect of indoor temperature on office work performance. Building and Environment, 2021, 203, 108037.	3.0	26

#	Article	IF	CITATIONS
73	Sensory pollution loads in six office buildings and a department store. Energy and Buildings, 2004, 36, 995-1001.	3.1	25
74	TAIL, a new scheme for rating indoor environmental quality in offices and hotels undergoing deep energy renovation (EU ALDREN project). Energy and Buildings, 2021, 244, 111029.	3.1	25
75	The effects of ventilation and temperature on sleep quality and next-day work performance: pilot measurements in a climate chamber. Building and Environment, 2022, 209, 108666.	3.0	25
76	Breathing zone and exhaled air reâ€inhalation rate under transient conditions assessed with a computerâ€simulated person. Indoor Air, 2022, 32, e13003.	2.0	23
77	Cerebral blood flow, fatigue, mental effort, and task performance in offices with two different pollution loads. Building and Environment, 2014, 71, 153-164.	3.0	22
78	Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28°C range. Indoor Air, 2022, 32, .	2.0	21
79	Measurements of the Effects of Air Quality on Sensory Perception. Chemical Senses, 2001, 26, 345-348.	1.1	20
80	Development of a novel methodology for indoor emission source identification. Atmospheric Environment, 2011, 45, 3034-3045.	1.9	19
81	Respiratory performance of humans exposed to moderate levels of carbon dioxide. Indoor Air, 2021, 31, 1540-1552.	2.0	19
82	The COVIDâ€19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air. Indoor Air, 2021, 31, 1683-1686.	2.0	19
83	Pilot study of the effects of ventilation and ventilation noise on sleep quality in the young and elderly. Indoor Air, 2021, 31, 2226-2238.	2.0	18
84	Investigating the relation between electroencephalogram, thermal comfort, and cognitive performance in neutral to hot indoor environment. Indoor Air, 2022, 32, .	2.0	18
85	Cabin air quality on nonâ€smoking commercial flights: A review of published data on airborne pollutants. Indoor Air, 2021, 31, 926-957.	2.0	17
86	Emission rate of carbon dioxide while sleeping. Indoor Air, 2021, 31, 2142-2157.	2.0	17
87	A survey of bedroom ventilation types and the subjective sleep quality associated with them in Danish housing. Science of the Total Environment, 2021, 798, 149209.	3.9	17
88	Association of bedroom environment with the sleep quality of elderly subjects in summer: A field measurement in Shanghai, China. Building and Environment, 2022, 208, 108572.	3.0	16
89	Comparison of wrist skin temperature with mean skin temperature calculated with Hardy and Dubois's seven-point method while sleeping. Energy and Buildings, 2022, 259, 111894.	3.1	16
90	Model-based approach to account for the variation of primary VOC emissions over time in the identification of indoor VOC sources. Building and Environment, 2012, 57, 403-416.	3.0	15

#	Article	IF	CITATIONS
91	Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance. Procedia Engineering, 2015, 121, 138-142.	1.2	15
92	The effects of cement-based and cement-ash-based mortar slabs on indoor air quality. Building and Environment, 2018, 135, 213-223.	3.0	15
93	The effects of warmth and CO ₂ concentration, with and without bioeffluents, on the emission of CO ₂ by occupants and physiological responses. Indoor Air, 2021, 31, 2176-2187.	2.0	15
94	Effects of increased activity level on physiological and subjective responses at different high temperatures. Building and Environment, 2021, 201, 108011.	3.0	15
95	Ozone Initiates Human-Derived Emission of Nanocluster Aerosols. Environmental Science & Technology, 2021, 55, 14536-14545.	4.6	15
96	Effects of window opening on the bedroom environment and resulting sleep quality. Science and Technology for the Built Environment, 2021, 27, 995-1015.	0.8	13
97	Effect of Increased Cabin Recirculation Airflow Fraction on Relative Humidity, CO2 and TVOC. Aerospace, 2021, 8, 15.	1.1	11
98	Responses to Human Bioeffluents at Levels Recommended by Ventilation Standards. Procedia Engineering, 2017, 205, 609-614.	1.2	10
99	The future of IEQ in green building certifications. Buildings and Cities, 2021, 2, 907-927.	1.1	10
100	CO2 emission rates from sedentary subjects under controlled laboratory conditions. Building and Environment, 2022, 211, 108735.	3.0	10
101	The Proportion of Residences in European Countries with Ventilation Rates below the Regulation Based Limit Value. International Journal of Ventilation, 2013, 12, 129-134.	0.2	9
102	What are indoor air quality priorities for energy-efficient buildings?. Indoor and Built Environment, 2015, 24, 579-582.	1.5	9
103	Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans. Environmental Science & Technology, 2021, 55, 13614-13624.	4.6	9
104	Human metabolic emissions of carbon dioxide and methane and their implications for carbon emissions. Science of the Total Environment, 2022, 833, 155241.	3.9	9
105	Modeling the impact of indoor relative humidity on the infection risk of five respiratory airborne viruses. Scientific Reports, 2022, 12, .	1.6	9
106	Detailed characterization of bedroom ventilation during heating season in a naturally ventilated semi-detached house and a mechanically ventilated apartment. Science and Technology for the Built Environment, 2021, 27, 158-180.	0.8	7
107	VENTILATION: WHY does no one take it seriously?. Indoor Air, 2021, 31, 605-607.	2.0	6
108	Study of the measured and perceived indoor air quality in Swedish school classrooms. IOP Conference Series: Earth and Environmental Science, 0, 588, 032070.	0.2	5

#	Article	IF	CITATIONS
109	The Adaptive Thermal Comfort model may not always predict thermal effects on performance. Indoor Air, 2014, 24, 552-553.	2.0	4
110	Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season. Lecture Notes in Electrical Engineering, 2014, , 203-214.	0.3	4
111	PredicTAIL, a prediction method for indoor environmental quality in buildings undergoing deep energy renovation based on the TAIL rating scheme. Energy and Buildings, 2022, 258, 111839.	3.1	4
112	Warmth and performance: reply to the letter from Leyten and Kurvers (2013). Indoor Air, 2013, 23, 437-438.	2.0	2
113	ISIAQ Academy Awards 2014. Indoor Air, 2014, 24, 447-449.	2.0	2
114	Editorial - special issue on Indoor pollutants, chemistry and health. Building and Environment, 2015, 93, 1-2.	3.0	2
115	The influence of the combined effect of draught and radiant thermal asymmetry on human performance. E3S Web of Conferences, 2019, 111, 06004.	0.2	1
116	Congratulations to the recipients of the Academy of Fellows of ISIAQ Awards 2020. Indoor Air, 2021, 31, 1687-1690.	2.0	1
117	Occupant Emissions and Chemistry. , 2022, , 1-27.		1
118	ISIAQ Academy Awards 2016. Indoor Air, 2017, 27, 705-707.	2.0	0
119	Effect of increased cabin recirculation airflow fraction on relative humidity, CO2 and TVOC. IOP Conference Series: Materials Science and Engineering, 2021, 1024, 012092.	0.3	0
120	Response to the Letter to the Editor sent by Judith Anderson, industrial hygienist at the association of flight attendants. Indoor Air, 2022, 32, e13006.	2.0	0
121	Economic Consequences. , 2022, , 1-11.		0

122 A European project SysPAQ. , 0, , 467-480.

0