Constantinos Noutsopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031532/publications.pdf Version: 2024-02-01

CONSTANTINOS

#	Article	IF	CITATIONS
1	Integrated selection of PHA-storing biomass and nitrogen removal via nitrite from sludge reject water: a mathematical model. Environmental Technology (United Kingdom), 2024, 45, 73-86.	1.2	О
2	Energy Consumption and Carbon Footprint of Greek Wastewater Treatment Plants. Water (Switzerland), 2022, 14, 320.	1.2	11
3	Biotic and Abiotic Biostimulation for the Reduction of Hexavalent Chromium in Contaminated Aquifers. Water (Switzerland), 2022, 14, 89.	1.2	6
4	Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20, 1333-1375.	8.3	124
5	The Inhibitory Effect of Free Nitrous Acid and Free Ammonia on the Anoxic Phosphorus Uptake Rate of Polyphosphate-Accumulating Organisms. Energies, 2022, 15, 2108.	1.6	2
6	Effectiveness of tertiary treatment processes in removing different classes of emerging contaminants from domestic wastewater. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	17
7	Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. Water (Switzerland), 2022, 14, 2179.	1.2	0
8	Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renewable Energy, 2021, 168, 438-447.	4.3	68
9	Fate of Emerging Contaminants in High-Rate Activated Sludge Systems. International Journal of Environmental Research and Public Health, 2021, 18, 400.	1.2	25
10	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , 1-106.	0.3	5
11	Thiosulphate driven autotrophic denitrification via nitrite using synthetic wastewater. Journal of Chemical Technology and Biotechnology, 2021, 96, 1675-1681.	1.6	2
12	Inhibition of free nitrous acid and free ammonia on polyphosphate accumulating organisms: Evidence of insufficient phosphorus removal through nitritation-denitritation. Journal of Environmental Management, 2021, 297, 113390.	3.8	7
13	Assessing the Performance of Environmentally Friendly-Produced Zerovalent Iron Nanoparticles to Remove Pharmaceuticals from Water. Sustainability, 2021, 13, 12708.	1.6	6
14	How can we link teaching with research in our engineering courses? The case of an ecological modelling course in two European Universities. European Journal of Engineering Education, 2020, 45, 597-613.	1.5	2
15	Evaluating the Fate of Emerging Contaminants in Wastewater Treatment Plants through Plant-Wide Mathematical Modelling. Environmental Processes, 2020, 7, 1065-1094.	1.7	12
16	Analytical and mathematical assessment of emerging pollutants fate in a river system. Journal of Hazardous Materials, 2019, 364, 48-58.	6.5	25
17	Biological groundwater treatment for hexavalent chromium removal at low chromium concentrations under anoxic conditions. Environmental Technology (United Kingdom), 2019, 40, 365-373.	1.2	11
18	Assessment of the environmental fate of endocrine disrupting chemicals in rivers. Science of the Total Environment, 2018, 628-629, 947-958.	3.9	34

CONSTANTINOS

#	Article	IF	CITATIONS
19	Greywater characterization and loadings – Physicochemical treatment to promote onsite reuse. Journal of Environmental Management, 2018, 216, 337-346.	3.8	99
20	Reject water characterization and treatment through short ut nitrification/denitrification: assessing the effect of temperature and type of substrate. Journal of Chemical Technology and Biotechnology, 2018, 93, 3638-3647.	1.6	11
21	Chlorination of benzothiazoles and benzotriazoles and transformation products identification by LC-HR-MS/MS. Journal of Hazardous Materials, 2017, 323, 400-413.	6.5	33
22	Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. Journal of Hazardous Materials, 2017, 323, 233-241.	6.5	57
23	A review on nitrous oxide (N 2 O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Science of the Total Environment, 2017, 596-597, 106-123.	3.9	221
24	Biological treatment of groundwater with a high hexavalent chromium content under anaerobic and anoxic conditions. Journal of Chemical Technology and Biotechnology, 2016, 91, 1681-1687.	1.6	11
25	Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere, 2016, 152, 238-244.	4.2	58
26	Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Science and Technology, 2015, 71, 303-308.	1.2	119
27	Can strict water reuse standards be the drive for the wider implementation of MBR technology?. Desalination and Water Treatment, 2015, 53, 3303-3308.	1.0	6
28	Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products. Chemosphere, 2015, 138, 675-681.	4.2	86
29	Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: The effect of pH, total suspended solids and humic acids and identification of degradation by-products. Chemosphere, 2015, 119, S109-S114.	4.2	52
30	Comparison of alternative additives used for the mitigation of membrane fouling in membrane bioreactors. Desalination and Water Treatment, 2014, 52, 5740-5747.	1.0	6
31	The role of activated carbon and disinfection on the removal of endocrine disrupting chemicals and non-steroidal anti-inflammatory drugs from wastewater. Environmental Technology (United) Tj ETQq1 1 0.7843	14 ng8T /0	Dve do ck 10
32	Anaerobic co-digestion of grease sludge and sewage sludge: The effect of organic loading and grease sludge content. Bioresource Technology, 2013, 131, 452-459.	4.8	72
33	Effect of wastewater chlorination on endocrine disruptor removal. Water Science and Technology, 2013, 67, 1551-1556.	1.2	14
34	A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks. FEMS Microbiology Ecology, 2012, 80, 380-389.	1.3	13
35	Investigation of long-term operation and biomass activity in a membrane bioreactor system. Water Science and Technology, 2011, 63, 1906-1912.	1.2	11
36	Removal of taste and odour from potable water by ozone and Powdered Activated Carbon (PAC). International Journal of Environment and Waste Management, 2010, 5, 392.	0.2	14

CONSTANTINOS

#	Article	IF	CITATIONS
37	Long chain fatty acids removal in selector tanks: Evidence for insufficient <i>Microthrix parvicella</i> control. Desalination and Water Treatment, 2010, 23, 20-25.	1.0	9
38	Comparison of Bioluminescence and Nitrification Inhibition Methods for Assessing Toxicity to Municipal Activated Sludge. Water Environment Research, 2008, 80, 484-489.	1.3	9
39	Optimization of Nitrogen Removal and Startup of Psyttalia Sewage Treatment Works. Environmental Technology (United Kingdom), 2007, 28, 129-136.	1.2	3
40	Identification of Type and Causes of Filamentous Bulking under Mediterranean Conditions. Environmental Technology (United Kingdom), 2007, 28, 115-122.	1.2	15
41	The implementation of the Water Framework Directive (WFD) at the river basin of Anthemountas with emphasis on the pressures and impacts analysis. Desalination, 2007, 210, 1-15.	4.0	17
42	Selected stormwater priority pollutants — a European perspective. Science of the Total Environment, 2007, 383, 41-51.	3.9	229