
Sarah J Pethybridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3, 430-439.	3.4	1,731
2	Leaf Doctor: A New Portable Application for Quantifying Plant Disease Severity. Plant Disease, 2015, 99, 1310-1316.	0.7	140
3	Standard Area Diagrams for Aiding Severity Estimation: Scientometrics, Pathosystems, and Methodological Trends in the Last 25 Years. Phytopathology, 2017, 107, 1161-1174.	1.1	78
4	Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology, 2011, 101, 640-643.	1.1	73
5	Diseases of Pyrethrum in Tasmania: Challenges and Prospects for Management. Plant Disease, 2008, 92, 1260-1272.	0.7	53
6	Stagonosporopsis spp. associated with ray blight disease of Asteraceae. Australasian Plant Pathology, 2012, 41, 675-686.	0.5	50
7	Spatiotemporal Description of Epidemics Caused by Phoma ligulicola in Tasmanian Pyrethrum Fields. Phytopathology, 2005, 95, 648-658.	1.1	49
8	Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata. IMA Fungus, 2015, 6, 233-248.	1.7	46
9	Insights Into the Ecology of <i>Grapevine red blotch virus</i> in a Diseased Vineyard. Phytopathology, 2018, 108, 94-102.	1.1	44
10	Metaâ€analytic modelling of the incidence–yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology, 2017, 66, 460-468.	1.2	39
11	<i>Cercospora beticola</i> : The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular Plant Pathology, 2020, 21, 1020-1041.	2.0	39
12	Development of a Fungicide-Based Management Strategy for Foliar Disease Caused by Phoma ligulicola in Tasmanian Pyrethrum Fields. Plant Disease, 2005, 89, 1114-1120.	0.7	37
13	Genotypic Diversity and Resistance to Azoxystrobin of <i>Cercospora beticola</i> on Processing Table Beet in New York. Plant Disease, 2016, 100, 1466-1473.	0.7	37
14	Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina, and Morchella septimelata. IMA Fungus, 2018, 9, 199-223.	1.7	37
15	Spatiotemporal spread of grapevine red blotch-associated virus in a California vineyard. Virus Research, 2017, 241, 156-162.	1.1	36
16	Seedborne Infection of Pyrethrum by Phoma ligulicola. Plant Disease, 2006, 90, 891-897.	0.7	29
17	Changes in Distribution and Frequency of Fungi Associated With a Foliar Disease Complex of Pyrethrum in Australia. Plant Disease, 2015, 99, 1227-1235.	0.7	28
18	Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS ONE, 2017, 12, e0173915.	1.1	28

#	Article	IF	CITATIONS
19	A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues. Tropical Plant Pathology, 2022, 47, 14-24.	0.8	27
20	Challenges and Prospects for Building Resilient Disease Management Strategies and Tactics for the New York Table Beet Industry. Agronomy, 2018, 8, 112.	1.3	26
21	Genetic structure of Cercospora beticola populations on Beta vulgaris in New York and Hawaii. Scientific Reports, 2017, 7, 1726.	1.6	25
22	De novo genome assembly of Cercospora beticola for microsatellite marker development and validation. Fungal Ecology, 2017, 26, 125-134.	0.7	24
23	Management of Cercospora Leaf Spot in Conventional and Organic Table Beet Production. Plant Disease, 2017, 101, 1642-1651.	0.7	22
24	Emergence of Stemphylium Leaf Blight of Onion in New York Associated With Fungicide Resistance. Plant Disease, 2019, 103, 3083-3092.	0.7	22
25	Sensitivity and Efficacy of Boscalid, Fluazinam, and Thiophanate-Methyl for White Mold Control in Snap Bean in New York. Plant Disease, 2017, 101, 1253-1258.	0.7	21
26	Improving Fungicide-Based Management of Ray Blight Disease in Tasmanian Pyrethrum Fields. Plant Disease, 2008, 92, 887-895.	0.7	19
27	Global genotype flow in Cercospora beticola populations confirmed through genotyping-by-sequencing. PLoS ONE, 2017, 12, e0186488.	1.1	19
28	Spatial characteristics of white mould epidemics and the development of sequential sampling plans in Australian bean fields. Plant Pathology, 2011, 60, 1169-1182.	1.2	18
29	Identification of the MAT1 locus in Stagonosporopsis tanaceti, and exploring its potential for sexual reproduction in Australian pyrethrum fields. Fungal Biology, 2015, 119, 408-419.	1.1	18
30	Tan spot of pyrethrum is caused by a <i>Didymella</i> species complex. Plant Pathology, 2016, 65, 1170-1184.	1.2	18
31	Characterization of the Spatiotemporal Attributes of Sclerotinia Flower Blight Epidemics in a Perennial Pyrethrum Pathosystem. Plant Disease, 2010, 94, 1305-1313.	0.7	16
32	Prediction of Potato Tuber Damage by Root-Knot Nematodes using Quantitative DNA Assay of Soil. Plant Disease, 2016, 100, 592-600.	0.7	16
33	Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris. Fungal Biology, 2018, 122, 264-282.	1.1	16
34	Temporal Genetic Differentiation of <i>Cercospora beticola</i> Populations in New York Table Beet Fields. Plant Disease, 2018, 102, 2074-2082.	0.7	16
35	Stemphylium Leaf Blight: A Re-Emerging Threat to Onion Production in Eastern North America. Plant Disease, 2021, 105, 3780-3794.	0.7	16
36	Comparison of UAS-Based Structure-from-Motion and LiDAR for Structural Characterization of Short Broadacre Crops. Remote Sensing, 2021, 13, 3975.	1.8	16

#	Article	IF	CITATIONS
37	Characterization of mating type genes supports the hypothesis that Stagonosporopsis chrysanthemi is homothallic and provides evidence that Stagonosporopsis tanaceti is heterothallic. Current Genetics, 2014, 60, 295-302.	0.8	15
38	Rapid Changes in the Genetic Composition of <i>Stagonosporopsis tanaceti</i> Population in Australian Pyrethrum Fields. Phytopathology, 2015, 105, 358-369.	1.1	15
39	Estimate, a New iPad Application for Assessment of Plant Disease Severity Using Photographic Standard Area Diagrams. Plant Disease, 2018, 102, 276-281.	0.7	15
40	Broadacre Crop Yield Estimation Using Imaging Spectroscopy from Unmanned Aerial Systems (UAS): A Field-Based Case Study with Snap Bean. Remote Sensing, 2021, 13, 3241.	1.8	15
41	Growth Stage Classification and Harvest Scheduling of Snap Bean Using Hyperspectral Sensing: A Greenhouse Study. Remote Sensing, 2020, 12, 3809.	1.8	14
42	Analysis of Spatiotemporal Dynamics of Virus Spread in an Australian Hop Garden by Stochastic Modeling. Plant Disease, 2003, 87, 56-62.	0.7	13
43	Epidemics of Ray Blight on Pyrethrum are Linked to Seed Contamination and Overwintering Inoculum of <i>Phoma ligulicola</i> var. <i>inoxydabilis</i> . Phytopathology, 2011, 101, 1112-1121.	1.1	13
44	Genetic Diversity and Structure in Regional <i>Cercospora beticola</i> Populations from <i>Beta vulgaris</i> subsp. <i>vulgaris</i> Suggest Two Clusters of Separate Origin. Phytopathology, 2019, 109, 1280-1292.	1.1	13
45	Isolation of nematode DNA from 100Âg of soil using Fe3O4 super paramagnetic nanoparticles. Nematology, 2018, 20, 271-283.	0.2	12
46	An improved PCR assay for species-specific detection and quantification of <i>Cercospora beticola</i> . Canadian Journal of Plant Pathology, 2020, 42, 72-83.	0.8	12
47	Detection of <i>Cercospora beticola</i> and <i>Phoma betae</i> on Table Beet Seed using Quantitative PCR. Phytopathology, 2020, 110, 943-951.	1.1	12
48	Genome-Wide Association and Selective Sweep Studies Reveal the Complex Genetic Architecture of DMI Fungicide Resistance in <i>Cercospora beticola</i> . Genome Biology and Evolution, 2021, 13, .	1.1	12
49	Yield modeling of snap bean based on hyperspectral sensing: a greenhouse study. Journal of Applied Remote Sensing, 2020, 14, 1.	0.6	12
50	First report of <i>Didymella americana</i> on baby lima bean (<i>Phaseolus lunatus</i>). Canadian Journal of Plant Pathology, 2016, 38, 389-394.	0.8	11
51	Genotypic characteristics in populations of <i>Sclerotinia sclerotiorum</i> from New York State, <scp>USA</scp> . Annals of Applied Biology, 2017, 170, 219-228.	1.3	11
52	Alternative Hosts of <i>Cercospora beticola</i> in Field Surveys and Inoculation Trials. Plant Disease, 2019, 103, 1983-1990.	0.7	11
53	Development of a Species-Specific PCR for Detection and Quantification of <i>Meloidogyne hapla</i> in Soil Using the <i>16D10</i> Root-Knot Nematode Effector Gene. Plant Disease, 2019, 103, 1902-1909.	0.7	11
54	Evaluation of App-Embedded Disease Scales for Aiding Visual Severity Estimation of Cercospora Leaf Spot of Table Beet. Plant Disease, 2019, 103, 1347-1356.	0.7	11

#	Article	IF	CITATIONS
55	Lack of Evidence for Recombination or Spatial Structure in Phoma ligulicola var. inoxydabilis Populations from Australian Pyrethrum Fields. Plant Disease, 2012, 96, 746-751.	0.7	10
56	Site-specific risk factors of white mould epidemics in bean (<i>Phaseolus vulgaris</i>) in Tasmania, Australia. New Zealand Journal of Crop and Horticultural Science, 2012, 40, 147-159.	0.7	10
57	Minimizing Crop Damage Through Understanding Relationships Between Pyrethrum Phenology and Ray Blight Disease Severity. Plant Disease, 2013, 97, 1431-1437.	0.7	10
58	Optimizing Cercospora Leaf Spot Control in Table Beet Using Action Thresholds and Disease Forecasting. Plant Disease, 2020, 104, 1831-1840.	0.7	10
59	Tan spot of lima bean caused byBoeremia exiguavar.exiguain New York State, USA. Canadian Journal of Plant Pathology, 2015, 37, 523-528.	0.8	9
60	Genetic Diversity and Differentiation in <i>Phoma betae</i> Populations on Table Beet in New York and Washington States. Plant Disease, 2019, 103, 1487-1497.	0.7	9
61	Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. Phytopathology, 2016, 106, 1521-1529.	1.1	8
62	Horticultural Characteristics and Susceptibility of Table Beet Cultivars to Cercospora Leaf Spot in New York. HortTechnology, 2017, 27, 530-538.	0.5	8
63	Genome Resource for Two <i>Stemphylium vesicarium</i> Isolates Causing Stemphylium Leaf Blight of Onion in New York. Molecular Plant-Microbe Interactions, 2020, 33, 562-564.	1.4	8
64	Evaluation of Leaf Area Index (LAI) of Broadacre Crops Using UAS-Based LiDAR Point Clouds and Multispectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4027-4044.	2.3	8
65	Spatiotemporal Characterization of Sclerotinia Crown Rot Epidemics in Pyrethrum. Plant Disease, 2014, 98, 267-274.	0.7	7
66	Genome Resource for <i>Neocamarosporium betae</i> (syn. <i>Pleospora betae</i>), the Cause of Phoma Leaf Spot and Root Rot on <i>Beta vulgaris</i> . Molecular Plant-Microbe Interactions, 2019, 32, 787-789.	1.4	7
67	How much do standard area diagrams improve accuracy of visual estimates of the percentage area diseased? A systematic review and meta-analysis. Tropical Plant Pathology, 2022, 47, 43-57.	0.8	7
68	Crop Damage from Sclerotinia Crown Rot and Risk Factors in Pyrethrum. Plant Disease, 2014, 98, 103-111.	0.7	6
69	Incidence and Pathogenicity of Didymella americana on Table Beet in New York. Plant Health Progress, 2016, 17, 270-272.	0.8	6
70	Revisiting Stagonosporopsis species associated with chrysanthemum and pyrethrum ray blight. Australasian Plant Pathology, 2016, 45, 561-570.	0.5	6
71	Identification and characterization of Ditylenchus spp. populations from garlic in New York State, USA. Tropical Plant Pathology, 2016, 41, 193-197.	0.8	6
72	Mycoflora Associated With Pyrethrum Seed and the Integration of Seed Steam Treatment Into Foliar Disease Management Strategies. Plant Disease, 2017, 101, 1874-1884.	0.7	6

#	Article	IF	CITATIONS
73	Soil-Mediated Effects on Weed-Crop Competition: Elucidating the Role of Annual and Perennial Intercrop Diversity Legacies. Agronomy, 2020, 10, 1373.	1.3	6
74	Phylogeny of cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales) from Hawaii and New York reveals novel species within the Cercospora beticola complex. Mycological Progress, 2021, 20, 261-287.	0.5	6
75	Hierarchical models for white mould in snap bean. Plant Pathology, 2018, 67, 145-155.	1.2	5
76	Evidence for Sexual Recombination in <i>Didymella tanaceti</i> Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. Phytopathology, 2019, 109, 155-168.	1,1	5
77	Rolled–crimped cereal rye residue suppresses white mold in no-till soybean and dry bean. Renewable Agriculture and Food Systems, 2020, 35, 599-607.	0.8	5
78	Anthracnose of Onion Caused by <i>Colletotrichum coccodes</i> in New York. Plant Disease, 2016, 100, 2171-2171.	0.7	5
79	Estimation of Pyrethrum Flower Number Using Digital Imagery. HortTechnology, 2015, 25, 617-624.	0.5	5
80	Gigahertz Ultrasonic Imaging of Nematodes in Liquids, Soil, and Air. , 2021, , .		5
81	A polymerase chain reaction assay for ascosporic inoculum of <i>Sclerotinia</i> species. New Zealand Journal of Crop and Horticultural Science, 2015, 43, 233-240.	0.7	4
82	Probability distributions for marketable pods and white mould on snap bean. Annals of Applied Biology, 2017, 171, 179-189.	1.3	4
83	Spatiotemporal Attributes and Crop Loss Associated with Tan Spot Epidemics in Baby Lima Bean in New York. Plant Disease, 2018, 102, 405-412.	0.7	4
84	Optimizing fungicide timing for the management of white mold in processing snap bean in New York. Crop Protection, 2019, 125, 104883.	1.0	4
85	Spatial and spatiotemporal analysis of Meloidogyne hapla and Pratylenchus penetrans populations in commercial potato fields in New York, USA. Nematology, 2020, 23, 139-151.	0.2	4
86	Development of a Sequential Sampling Plan using Spatial Attributes of Cercospora Leaf Spot Epidemics of Table Beet in New York. Plant Disease, 2021, 105, 2453-2465.	0.7	4
87	Predicting Table Beet Root Yield with Multispectral UAS Imagery. Remote Sensing, 2021, 13, 2180.	1.8	4
88	First Report of Cercospora Blight of <i>Asparagus officinalis</i> Caused by <i>Cercospora asparagi</i> in New York. Plant Disease, 2017, 101, 1953.	0.7	4
89	Seedborne <i>Cercospora beticola</i> Can Initiate Cercospora Leaf Spot from Sugar Beet (<i>Beta) Tj ETQq1 1</i>	0.784314 r 1.1	rgBT_/Overloc
90	Identification of factors associated with white mould in snap bean using treeâ€based methods. Plant Pathology, 2019, 68, 1694-1705.	1.2	3

#	Article	IF	CITATIONS
91	Phoma Leaf Spot Susceptibility and Horticultural Characteristics of Table Beet Cultivars in New York. Plant Health Progress, 2019, 20, 95-103.	0.8	3
92	Efficacy of Double Nickel LC (Bacillus amyloliquefaciens D747 Strain) for Management of White Mold in Snap and Dry Bean. Plant Health Progress, 2019, 20, 61-66.	0.8	3
93	Confirmation of Paracercospora egenula causing leaf spot of eggplant in Hawaii. Australasian Plant Disease Notes, 2016, 11, 1.	0.4	2
94	Cluster: A New Application for Spatial Analysis of Pixelated Data for Epiphytotics. Phytopathology, 2017, 107, 1556-1566.	1.1	2
95	Southern Sclerotium Root Rot Caused by <i>Athelia rolfsii</i> on Table Beet in New York. Plant Health Progress, 2019, 20, 4-6.	0.8	2
96	Improving fungicide-based management of Cercospora leaf spot in table beet in New York, USA. Canadian Journal of Plant Pathology, 2020, 42, 353-366.	0.8	2
97	Comparing the Fungicide Sensitivity of <i>Sclerotinia sclerotiorum</i> Using Mycelial Growth and Ascospore Germination Assays. Plant Disease, 2022, 106, 360-363.	0.7	2
98	First Report of Cercospora Leaf Spot Caused by <i>Cercospora chenopodii</i> on <i>Spinacia oleracea</i> in the U.S.A Plant Disease, 2020, 104, 976-976.	0.7	2
99	Southern blight of perennial swallowwort (<i>Vincetoxicum</i> spp.) in New York. Invasive Plant Science and Management, 2021, 14, 223-231.	0.5	2
100	Carpogenic germination of sclerotia of <i>Sclerotinia minor</i> and ascosporic infection of pyrethrum flowers. Canadian Journal of Plant Pathology, 2015, 37, 179-187.	0.8	1
101	First Report of Leaf Curl on Celery (<i>Apium graveolens</i> var. <i>dulce</i>) Caused by <i>Colletotrichum fioriniae</i> in New York. Plant Disease, 2019, 103, 1791-1791.	0.7	1
102	Response of potato cultivars to the northern root-knot nematode, Meloidogyne hapla, under field conditions in New York State, USA. Nematology, 2020, 23, 425-433.	0.2	1
103	First Report of Carrot Root Rot Caused by <i>Rhexocercosporidium carotae</i> in the United States. Plant Disease, 2017, 101, 248-248.	0.7	1
104	Spatiotemporal Dynamics of Stemphylium Leaf Blight and Potential Inoculum Sources in New York Onion Fields. Plant Disease, 2022, 106, 1381-1391.	0.7	1
105	Toward Crop Maturity Assessment via UAS-Based Imaging Spectroscopy—A Snap Bean Pod Size Classification Field Study. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	1
106	Control of Phoma Leaf Spot and Root Decay of Table Beet in New York. Plant Disease, 2022, 106, 1857-1866.	0.7	1
107	First Report of Halo Blight on Hop Caused by <i>Diaporthe humulicola</i> in New York. Plant Disease, 2023, 107, 216.	0.7	1
108	Forrest W. Nutter, Jr.: a career in phytopathometry. Tropical Plant Pathology, 0, , 1.	0.8	0

7